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SUMMARY

Verification tests are imposed by satellite system survivability specifi-

cations which require that an SGEMP current injection test be performed on each

Qualification Level Component Box to demonstrate SGEMP hardness.

This report presents the results of an extensive analytical and computa-

tional evaluation of the response of termination loads to cable SGEMP signals driven

in multiwire cable bundles, and the design, development and experimental verification
I of a Multipin Current Injection Test (C.I.T.) Method for performing SGEMP hardness

verification tests on electronic component boxes.

This C.I.T. method was developed to meet the technology needs for user-

oriented current injection technique using realistic hardware to correctly perform

these SGEMP electrical simulation tests at the individual component box level as

well as at the subsystem and system levels. The purpose of the analytical develop-

ment work was to quantify the dependence of the termination response on the manifold

of parameters which specify the cable SGEMP threat in multiwire cables. This quanti-

fication is essential for making a rational choice of the drive levels, coupling

factors, and cable characteristic impedances required in the implem-ntation of this

test technique.
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SECTION 1

INTRODUCTION

1-1 BACKGROUND

Systems generated electromagnetic pulse (SGEMP) is a transient radiation

effect produced in the exposure of a hardware system to the pulsed x-radiation and

i-radiation from a nuclear burst. Electrons are driven from irradiated material

surfaces which generate electromagnetic fields within and about system structure

and drive currents on system surfaces. This electromagnetic environment couples

energy into electrical systems; if sufficiently intense, this coupled energy can

produce upset or damage in sensitive electronic components.

For satellite systems the SGEMP threat can be classified into four re-

sponse regimes: external SGEMP, internal SGEMP, photon direct drive SGEMP, and

black box SGEMP. These regimes are defined in the following paragraphs.

External SGEMP. Electron emission from irradiated external surfaces of

the satellite produces a space current which drives electric and magnetic fields

in the neighborhood of the satellite and currents on structural surfaces of the

satellite. These currents and fields may couple directly to electrical systems

through coupling into antennas and exposed electrical cabling, or indirectly through

penetration into the satellite and along electrical cabling shields.

Internal SGEMP. Photons which penetrate into the satellite interior drive

electrons from irradiated internal surface producing space current within enclosures.

These cavity space currents drive electromagnetic fields and replacement currents

which couple into electrical cabling.

Photon Direct Drive SGEMP. Photons which penetrate into electrically

shielded cables drive electron emission from the interior surfaces of cable shields

and external surfaces of cable conductors. This charge displacement drives replace-

ment currents on the cable conductors which propogate to interfacing circuitry.

9



Black Box SGEMP. Photons which penetrate into electrical component boxes

drive electron emission from internal surfaces of the boxes and external surfaces

of conductors and bulk currents within dielectrics. The currents drive replacement

currents and fields which couple into wiring and printed circuitry. This effect is

particularly significant in component boxes such as RF amplifiers which utilize

high atomic number plating materials in their internal construction.

The net effect of the various SGEMP responses is to establish an electrical

threat to the interface circuits of component boxes which can be analytically repre-

sented as shown in Figure 1 by a number of separate invariant (independent of cable

and load impedances) distributed drive sources The field coupled threat due to the

external and internal SGEMP can be represented by capacitive and inductive voltage

sources, Ec and EL respectively. In the absence of space charge limiting, the wave-

shape of Ec follows the photon threat pulse shape j, while EL follows the time de-

rivative of the photon pulse. The photon direct drive threat, on the other hand,

is represented by a current source whose waveshape also follows the photon pulse. It

is the distributed nature of the threat, the voltage or current source representation

and the specific placement in the transmission line circuit which gives rise to the

unique energy-time transmission line waveshape profile associated with each SGEMP

response regime, and the principal reason for this development program.

LL WS

WIRE

-C -

D~ 
E C

SHIELD

Figure 1. General SGEMP wire-to-shield drive source threats
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It is possible through implementation of hardening techniques in the

satellite design to strongly reduce the susceptibility of the system to the exter-

nal SGEMP to a level small compared with the response to the internal SGEMP. Ef-

fective techniques are (1) the containment of all mission critical components in

Faraday cage-design enclosures and (2) the routing of all cable runs between enclo-

sures through conduits.

Similarly the system susceptibility to internal SGEMP can be strongly

reduced through implementation of hardened design techniques to a level small com-

pared with the photon direct drive SGEMP. Effective techniques here are (1) the

use of RF-tight design for all mission critical component boxes, (2) the RF shielding

of all cables and connectors interconnecting mission critical components, and (3) use

of low Z coating on all internal surfaces. Therefore, with the excention of black

box SGEMP where the above techniques cannot be applied, the pririary concerns of the

SGEMP survivability assessment are photon direct drive SGEMP.

1-2 PHOTON DIRECT DRIVE THREATS

The consequence of the photon direct drive being the primary SGEMP threat

is that the threat presented to interface circuits shown in Figure 1 is altered such

that the capacitive and inductive voltage sources become negligible. The basic

invariant threat becomes a distributed current source (whose waveshape follows the

photon pulse) driving a wire with transmission line characteristics.

Since satellite cables are comprised of many unshielded wires enclosed by

a common bundle shield, the actual invariant threat presented to component boxes is

as shown in Figure 2 for a general "N" wire cable. This threat consists of "N" in-

dividual distributed current sources; one for each wire, driving wire-to-shield.

The physics of the photon direct drive interactions, though, are such that large

differential mode current distributions are induced in the cable, that is, each wire

has a different value current driver induced in it. This mechanism is such that the

outer layer wires of the cable core on the X-ray incident side have high current

levels induced in them. The source currents induced in the wires as the X-ray pulse

travels through the core become progressively smaller, and even change polarity
sign. Each wire in the cable represents a real wire-to-shield transmission line

situation. The wires on the outer periphery of the core have the lowest character-

istic impedance, while those on the inner layers have the highest. Each of the "N"

wires on the bundles, however, are also tightly coupled to one another. Hence, the

wires in the cable also represent a real wire-to-wire transmission line situation.

11
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I

In spite of the apparent complexity of the electrical nature of the

photon direct drive effects, the threat presented to each interface pin can be

conceptually reduced to an equivalent wire-to-shield problem and represented as

shown in Figure 3. The source term current, IDN, shown here is an equivalent

source term which represents the combination of the actual invariant source term

induced in the wire and the amount of current coupled to or decoupled from the

wire of interest to the other wires in the bundle. A quantatative representation

sich as this for each wire in the bundle reduces a very complex problem to a very

simple task to identify which wire in the bundle represents the maximum energy

threat to be used in a hardness verification test.

The above discussions have alluded to the importance of considering the

transmission line nature of the photon direct drive threat. The significance of

these characteristics, which will be discussed in full in Section 2, are implied
in the typical behavior shown in Figure 4 and 5. This data shows the magnitude of

the threat presented to component box interface pins in terms of the energy level

and delivery time associated with a I ampere per meter direct drive threat in a

single wire-to-shield system from a particular photon pulse shape.

It will be shown that asthe interface impedance value increases, the

threat energy delivered increases until, at large impedance values, the threat

capability reaches a finite maximum. This maximum energy capability of the line

increases linearly with line length. However, the impedance value at which the

threat capability saturates decreases as line length increases until, the threat

is essentially a constant energy value independent of impedance and is quite simply

Q2/2C (i.e.: the equivalent charge, Q, produced by the X-ray threat divided by

twice the cable capacitance, C).

It will also be shown in Section 2 that the time it takes to deliver the

threat energy is also markedly effected by interface impedance . For an interface

imnedance which is ratched to the wire-to-shield characteristic imoedance, the threat
enermy is delivered in minimum times which are linearly related to line length. Hinher

and lower impedance values result in lonqer times for the threat eneray delivery.

These response characteristics demonstrate the complex nature of the

electrical pulse threat delivered to interface electronics from the photon direct

drive threat. One of the most striking features of the response is that the load

impedance value controls the amount of energy it receives for short line lengths,

13



o WIRE NO. N

zi ID N  z2

iV SHIELD

I COMPONENT BOX NO.2 -

COMPONENT BOX NO. I

Figure 3. Equivalent single wire-to-shield photon direct
drive threat for component box interface pins.

So MCTR

I 1 "- tO METE'FR

3I M~r£R

100

.. ' IIto

/ i

Figure 4. Transmission line dependence of the SGEMP energy delivered
to component box interfaces from a 1 ampere per i;eter
photon direct drive threat. The energy values shown are
50% of the final energy delivered.
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Figure 5. Transmission line dependence of the SGEMP energy rate
* delivered to component box interfaces from a 1 ampere

per meter photon direct drive threat. The time value
shown is the time in which 50% of the final energy is
delivered.

while for the longer lengths the threat is essentially a constant energy one. The

energy-time characteristics and polarity of a pulsed electrical threat are of par-

ticular importance in determining piece part burnout vulnerability. Hence a correct

simulation test must duplicate the actual energy-time nature of threat. The purpose

of this work was to develop a technique and instrumentation to drive an interface

circuit with the actual waveshape of the invarient wire-to-shield source term which

follows the photon pulse, and with the actual cable length and characteristic

impedance of the cable going to the interface circuit.

1-3 MULTIWIRE CABLE CASE

The threat energy characteristics given in Figure 4 show that the maximum

energy capability of the photon direct drive is limited, as would be expected, to

finite values. It is actually the wire-to-shield characteristic impedance (which

is related to capacitance), dielectric constdnt, and wire length which control the

SGEMP threat from reaching physically unrealizeable values. The maximum energy

capability, in fact, is inversely proportional to dielectric constant and directly

proportional to characteristic impedance, line length and total charge associated

with the direct drive current source. This surfaces a significant, but somewhat

subtle, aspect of the photon direct drive threat.

15



Recall that the photon direct drive threat is essentially of a wire-to-

shield transmission line nature with large differential mode source terms created

in the cable bundle. Since the maximum energy capability of a particular wire is

not only controlled by the magnitude of the wire's current source term but is also

controlled by the wire-to-shield characteristic impedance, it does not necessarily

follow that the wire with the largest source term represents the maximum threat

condition, since this wire generally has the lowest wire-to-shield characteristic

impedance.

In reality, each wire in the cable has it's own unique maximum energy

capability associated with it. Conceptually, one could describe the variation

in energy threat of the individual wires in the cable core as a function of wire

characteristic impedance, as shown in Figure 6 along with the complete mathematical

expressions for maximum wire-to-shield energy, short circuit current and open circuit

voltage.

The development of such a display is, in fact, what would be required in

order to define the maximum energy threat that the SGEMP direct drive poses to

interface circuits. Furthermore, the definition of the wire-to-shield characteristic

impedance associated with the maximum energy is essential to correctly simulate the

threat, since the indiscriminate use of a lower or higher impedance value would

result in an undertest or overtest respectively.

The correct threat specification situation is further complicated by the

fact that since satellite cables are comprised of many unshielded wires enclosed by

a common bundle shield, significant interwire coupling occurs which alters the equiva-

lent electrical parameters (equivalent drive source level and wire-to-shield character-

istic impedance) of the transmission line type threat. From a threat specification

standpoint, one could adopt an approach based on defining the maximum threat posed

to component box pins in terms of the total cable core current and some nominal or

worst case characteristic impedance. This is an extremely conservative approach

which is unrealistic but mathematically representative of an upper limit. This

approach, however, is completely intolerable from a satellite system standpoint

since it represents a significant hardware impact design solution to providing

adequate hardening against a realistic threat level.

16
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Hence, to correctly specify and simulate the maximum threat induced by

the photon direct drive response, Sections 3 and 4 develop analytical techniques

which would allow one to define a realistic set of electrical parameters which are

representative of the realistic maximum energy threat contained in a multiwire

satellite cable.

1-4 REVIEW OF PRESENT SGEMP DIRECT DRIVE SIMULATION METHODS

Since operational testing of the survivability of a satellite is precluded

by the nuclear test ban, simulation experiments must be employed to perform SGEMP

hardness verification tests. Photon simulators with threat level fluences are not

available, however, and recourse must be made to current injection test (C.I.T.)

techniques are required by the present satellite system survivability specifications.

The various C.I.T. techniques which are presently available under existing techno-

logy for possible use in the hardness verification tests are as follows:

1. Direct pin injection from a commercial pulse generator

2. Inductive/Capacitive (L/C) coupling to cable shield

3. Direct injection on cable shield

An advanced development technique, which ts described in Section 5 of this report

could also be considered as "direct injection wire-to-shield".

The primary considerations in selecting any candidate C.I.T. technique

are associated with the capability to reproduce the energy-time characteristics

of the photon direct drive threat, the compatability with actual satellite equip-

ments, and the degree of risk inherent with the approach. Detailed evaluations of

each candidate approach have been performed by GE/SD to identify the optimum method

which should be used to perform photon direct drive simulations. The essential

results of these evaluations are shown in Table 1. Direct pin injection from a

single, commercially available pulse generator is not included in the Table. This

technique could conceivably be configured to provide positive current control at

the high SGEMP required threat frequencies even for the high density type klarge

number of connector pins) connectors used in satellite systems. This technique,

however, does not come anywhere near being capable of simulating the transmission

line nature of the actual SGEMP threat. The conclusions from the C.I.T. evaluations

are that the C.I.T. technology which has been developed to date does not provide the

means to meet the SGEMP hardness verification specification in design hardened

satellite systems where the SGEMP threat is due to photon direct drive effects.
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Techniques such as those previously developed under EMP programs do not

provide a correct simulation of the energy-time nature of the photon direct drive

threat nor do they provide a practical, low risk approach which is compatable with

photon direct drive hardened designs in satellite equipments. Capacitive and induc-

tive coupling techniques, for example, do not correctly simulate the actual trans-

misson line nature of the photon direct drive source term. Furthermore, these tech-

niques do not provide individual, positive control of currents delivered to component

box pins when both long and short wire threats are required to be simultaneously

injected at the same connector interface.

The most desirable approach identified is direct injection wire-to-shield.

This approach is the most desirable from the standpoint of controlling amplitudes

on individual wires, eliminating unintentional overstress situations, and producing

the desired waveshapes to simulate the SGEMP direct drive threat. The technology

development effort required to establish a realistic C.I.T. technique which is

capable of both correctly simulating the electrical nature of the SGEMP photon direct

drive threat with d multipin, simulataneous drive capability, as well as meeting

the practical and hardened desiqn constraints posed by actual satellite electronic

and complex cable harness hardware is described in detail in Section 5.

1-5 THREAT SIMULATION HARDWARE CONSIDERATIONS

Since the severity of the SGEMP photon direct drive threat is controlled

by energy-time transmission line characteristics and specific wire length, hardening

requirements are imposed based on actual cable length in the satellite system for

each interface circuit as well as the quantitatively defineable electrical loads,

not only at the circuit of concern, but at the interfacing circuit at the opposite

end of the wire. In many cases, for example, the presence of a particular low

impedance electrical load or the addition of a single zener diode at one end of a

short-to-medium length wire is sufficient to provide protection to the interfacing

circuits at both ends of the line. For longer length lines, SGEMP hardening is

implemented at both ends of the line consistent with the line length of the trans-

mission line type threat. Hence, many interfacing circuits in a component box are

only SGEMP hardened when all their respective interface component boxes are electri-

cally connnected.
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An additional design consideration for threat simulation is associated

with the physical nature of the electrical systems (cables and connectors) in actual

satellites. Satellite cables are unlike re-entry vehicle cables in that they are

not generally straight, two connector cables. Instead, satellite cables are typical-

ly complex configurations comprised of large bundles of upwards of hundreds of

unshielded wires contained within a common bundle shield with numerous branches and

connector breakouts, with high density (large number of pins) connectors sed for

component box interfaces. Furthermore, the wiring in these cables consist of wires

with short total lengths (low threat level wires which require minimal SGEMP harden-

ing of their respective interface circuits) in a common bundle with wires of long

total lengths (high threat level wires which require extensive interface circuit

hardening).

The consequence of these design aspects are that an SGEMP simulation tech-

nique must not only provide high simulation fidelity of the energy-time transmission

line nature of the SGEMP threat for multipin, simultaneous drive of component boxes,

but must also be capable of correctly driving a component box whose SGEMP protection

is contained in numerous other component boxes which are not in the test setup, as

well as being capable of simultaneously driving some pins at high levels and others

at low levels to accomodate various distributions of long and short wire thrL--s at

the same connector interface. This latter requirement also has a significant impact

on the risk potential associated with any potential simulatV'- techn'.k .

Since the SGEMP hardness verification test is typically performed inline at

the latter portion of the total Qualification Cycle (generally before thermal-vacuum

qualification), a low risk simulation approach is required to avoid inadvertent over-

stress levels which could cause spacecraft equipment failures and imnact system inte-

gration and, possibly, flight schedules In view of the typical SGEMP hardening

designs employed in satellite systems, one cannot generally affort the luxury of

overdriving some pins at higher levels in order to assure that the minimum required

test levels are properly established in all pins. As such, the simulation method

must also be capable of providing individual positive control of each of the currents

delivered to each of the interface pins to eliminate high current (or voltage) hazards

to both the equipment as well as the operating personnel. An obvious additional

requirement, which is more practically oriented for user test evaluation, is that the

simulation methods be capable of being configured into portable, in-house hardware

readily adaptable to correctly interfacing (both electrically and mechanically) with

actual satellite component boxes and their associated ground test equipments.
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SECTION 2

TWO WIRE TRANSMISSION LINE CHARACTERISTICS

2-1 BACKGROUND AND APPROACH

This section describes a terminated two wire transmission line which has

point current sources distributed along its length from return to signal line. A

number of fundamental transmission line response equations are developed which pro-

vide useful tools for analyzing photon direct drive cable resopnses in a X-ray

radiation environment.

The fundamental equations on which this work rests appear in Schelkunoff

(Reference 1) where the waves produced on a transmission line by point sources are

succinctly described. The work of King (Reference 2) and Weeks (Reference 3) pro-

vide additional development of transmission line theory and point sources which form

the background theory to this section.

The response of a loaded two wire transmission line to distributed point

sources is derived in Section 2-2. The point current sources along the length of

line are assumed to be proporational to a defined waveshape, but with peak amplitude

and start time arbitrarily varying along the length of line. The line is assumed to

be linear, time invariant (Reference 4) and lossy. Loads are also assumed linear and

time invariant. The equations for load currents and for current on the line are

developed with reasonable generality in the frequency domain.

In Section 2-3, the transmission line response with current drivers is

then studied for the corollary case of a cable illuminated by an X-ray with an

arbitrary angle of incidence so that the induced point sources turn on as the X-ray

moves along the cable. Section 2-4 applies the results of Sections 2-2 and 2-3 to

specific applications of load impedance, pulse width and a current source amplitude.

2-2 TRANSMISSION LINE RESPONSE TO DISTRIBUTED CURRENT SOURCES

A two wire transmission line of length S is shown in Figure 7. The line

is loaded by two loads: Zo at z=o and Zs at z=s, where z is the distance on the

line from its end. Both line and loads are linear and time-invariant. The
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transmission line is driven by a distributed current source, assumed to be dis-

tributed point sources in the sense of Schelkunoff (reference 1). The point current

source is described mathematically as:

io  (x,t) = A(x) g (t-tx) (2.1)

where A(x) is an arbitary amplitude density function (Amp/m) of source location x,

measured from the end of the line. The function g(t) is assumed to be dimensionless,

normalized and causal, i.e.,

g(t)jmax = (2.2a)

and

g(t) = 0 for t < 0 (2.2b)

The parameter tx is an arbitary function of source location x. Thus, the equation

for io(x,t) is a representation of a point source which exists along the length of

the line with an arbitary amplitude A (x) and with an arbitrary start time tx,

dependent on location x from the end of the line.

The Fourier transform of io(x,t) can now be written as

1o(x,w) = F (i(x,t)) = e(x, ) G(,,) (2.3)

where

G(w) = F (g(t)) g(t) exp (-jwt)dt
and

I(x,,w) = A(x) exp (-jwtx).

For simplicity, the abbreviated notation Io(x,w) = lo(x) and p(x) is introduced.
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,ILZ

SS

Point Current Source Density
io(x,t)=A(x)g(t-tx), Distributed
Along Line

l(z) = Line Current Toward Zs @ Location Z

V(z) = Line Voltage @ Location Z

Figure 7. Transmission line with distributed

point current sources

The standard transmission line notations of reference 2 are introduced:

characteristic impedance zc =4GT+ '(4C

line propogation constant = T(R + jwL)(G + jwC) (2.4b)

reflection coefficients ro = zo - zc s- (2.4c)

where R = series line resistance /M

L = series line inductance H/M

G = shunt line conductance S/M

C = shunt line capacitance F/M
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The extensions of Zc and to include skin effects and other high frequency losses

are covered in reference 2.

The objective of this derivation is to compute the current on the line Iz

at location z. The current Iz can be thought of as the difference of two currents:

S= I() - 12() (2.5)

where Il(Z) is the contribution to 1 of all sources to the left of z,

i.e , x<z and 12() is the contribution of all sources to the right of z, i.e.,

X>Z.

Using Schelkunoff's development (reference 1), a point source driver at

location x of Zs to location x and where ZL is the reflection of Zo to location x

as indicated in Figure 8A. It is assumed that a differential source term driver

10(x) dx within a differential length of line dx launches a wave dIR(x) with the

sign convention of Figure 8a indicating plus to the right. Thus, by current division,

ZL(x)

dIR(x) = ZL(X) + ZR(x) (2.6a)

where 1 + o exp x

ZL() zc l-op - (2.6b)
I - Fexp(-2 ' x
1 + s exp -21 (s-x )

ZRW zc 1 - [ exp (-21 s-x) (2.6c)

Reflecting dIR(x) to location Z gives:

exp (2.7)
dll = exp(- Z x- exp (2.7)] I

= RR (F,x) dIR

where differential operator "d" is on x only.

Using the complementary model of Figure 8b for the left current (sources at x>z)

yields

dIL~x)ZR( x)
dI = Lx+ ZR-x- I°(x) dx (2.8)

and dI 2 (R) e-p- -r; exp- dI (2.9)

RL (-,x)dl L

. --.. __ _,.. . . .. .; ',,,o o -



cJ]l(4 ,
Jb,~ ~ T ...... .M

a) Location x<z.

Figure 8a.

b) Location x>z. S

Figure 8b.

Then from Equation 2.5 Iz is written as:

7 .S

fdll - fZ do2  (2.10)

0

The integrals are of the form:

z J HR (ZX) 1o(X) dx - H L (z,x) 10(X) dx (2.11)
0 7

where

HR = RR(Z,X) ZL(X) (2.11b)R R ~Z LCX)+Z R(X)

7R(X)
HL = RL(ZX) ZL(X)+zR(X) (2.11c)
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Contrary to the devastating appearance of these expressions, term

cancellations occur throughout, so that Equation 2.12 is all that remains.

One is careful to note that the direction of Iz is assumed to be towards Zs.

e-2e ) eF +ef e-  (X)dx

G(-) 2(1-7oi' e 2 ys (.2

(2.12)
e eZ- ro0 e - Yz] ,2"Z

[~ ~~ ~e e+r ~ I~ F5 e-~ e&x) (X)dx

2(1-i'0 1Y e- ) z

Equation 2.12 is the desired transfer function Iz/G(w) which relates Iz

to the input source pulse shape G(w). The integrands are of simple exponential

formats, with p(x) = A (x) exp (-jwtx). The Fourier spectrum for line current Iz
is thus easily computed, once p(x) is defined. Time domain histories can be

obtained via standard Fourier inversion for a specified G(LU).

The line voltage at location z can now be computed from the line current

Iz via superposition from the relation:

= 
,Sf

V(Z) ZR(Z) dII- Z L(Z) J I (2.13)
0 Z

where the functions ZR and L have been identified in Equations 2.6b and 2.6c.

The integrals for 1l and 12 are easily identified from Equations 2.10 and 2.12.

The load current in ZS, namely IL2' is :.imply Iz evaluated at Z=S, so:

IL2( ) e-,S~_5 ) S
I ( ) (1-. ) i s ( + I- &(X)dx (2.14)

G(.) 2(1-7'oT es ) 00/

The load current into o, namely ILl with the sign convention of Figure 7 is - I

evaluated at z=O.

L1  0) s eX (X)dx 2.15)G(-) 2(1-:o0, s e - 2 , s  f o -X e 2
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2-3 APPLICATION TO X-RAY DIRECT DRIVE RESPONSE

The application of Equation 2.12 to cable direct drive resulting from

X-ray illumination is straight forward. The geometry of Figure 9 shows a cable

with an X-ray illumination environment. The distributed current source is assumed

to have the form of equation 2.1:

i0(xt) = i0 (t-tx) ID g(t-tx) (2.16)

where, A(x) = ID = constant. If the angle of incident illumination is o, as shown

in Figure 9, the point drivers turn on along the line at time tx = x coso/vo where

Vo is the speed of light in M/S and tx is time relative to the time point when

location x=o is illuminated.

By taking the Fourier transform of io , the function of p(x) is identified

as:

p(x) = 'D exp (-jwx cos4/v0 )
(2.17)

= ID exp (-j0 cosux)

Thus, for normal incidence, t =o and the entire cable is driven simultaneously,

resulting in p(x) = ID = constant. For on line incidence, H - o and tx  X/v,

resulting in e(x) = ID exp (-jwx/v0 ).

rA I')11r. MT L.l~ 1, P 7r-LI H

LOAD I( x Xcooe ) "/ LvAP2

Figure 9. Cable geometry with radiation9
incident at arbitrary angle 0. 0'
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In other words, when the fluence propagates along the length of cable,

the X-ray illuminates the cable with sources that turn on at time x/vo. The cable

generates a wave which moves, generally speaking, slower than vo . Equations 2.14

and 2.15 will now be studied to find out what effects these wave motions have on

load currents.

Whereas, the equations for load currents ILl and IL2 (2.14 and 2.15) are

perfectly general and can be analyzed via numerical Fourier analysis for lossy

cables, the consideration of lossless transmission lines is now taken up. This

restriction is applicable for the analysis of many practical cable configurations.

The lossless line also allows for the introduction of simple line parameters, in

particular, the line's one way transit time i, so as to provide a continuing

physical insight to the meaning of the equations as they are developed. The follow-

ing notation is introduced (R=G=O):

8
vo = 3 x 10 M/S, speed of light (2.18a)

S = length of line in meters (2.18b)

io = S/vo = time for light to traverse line length S. (2.18c)

o =  W/Vo0 (2.18d)

Vp = i/\-- (2.18e)

= S/vp (line delay or one-way cable transit time (2.18f)
of a wave on the line.)

Y = jiL = j (2.18g)

T, = T- o cosH (2.18h)

12 = T+ cost" (2.18i)

I (A = F(io(t)) (2.18j)

SIo(. )
Q(")= 0 (2.18k)

The result of substituting ,x) = exp (-j. cos x) into the Equation 2.14 for
0

IL2 yields Equation 2.19, which when factored in yields Equation 3.20. These

equations are valid for > T coso.
3
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L2 : 2[l-F exp (-2jwT) exp (-jwT cose)

(2.19a)

-. .exp (2 1 + i-Cos.,0exp (-jWT)7 2 0x (j,(2 +1 coT, ' 21

A V-ovS exp (-2j-T) (2.19b)

(I: S) Q(-) -J, cos i1 -2j_
IL2 2 1  o 2

o (2.20)

Considerable algebraic effort is saved in the integral evaluation for ILl
by using the solution for IL2 with Zo replaced by Zs in Figure 9 and noting that in

this geometry, I(X) = exp (-Ji:o (S-X) cos-) (2.21)

Thus, to obtain I from Equation 2.20 for IL2' Po is replaced by -v Zo is

interchanged with Zs(thereby *'o is interchanged with -S), -I is interchanged with

129 lo is replaced by -10 and the whole expression is then multiplied by

exp (-j 0S cost.) = exp (-j- 0 cos-) to yield:

I (i-i' O) ' e - 2\-J. 12 )ej-' (2.22)ILl 2 -12' I -- 1

with ', defined in Equation 2.19b. The student of Fourier theory will immediately

recognize that, for 0/o, Ll will start responding before IL2, because of the

absence of the phase shift multiplier exp (-J0o cos o) which occurs in Equation

2.20. That is to say that the current in the load at z=s will be zero for time

less than (io cos ,)), the time at which the X-ray arrives at z=s, whereas, the

current at z=o will commence upon the illumination of that end of the cable.
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For the case of perpendicular incidence, where the line is instantaneously and

uniformly illuminated, t)= 7/2 and T=T:T2 to yield:

(I0Q) ) -2jWT ejT

1-F e -(1-rs) (2.23)L1 2TA s

(11 ,M.-

IL2  2 i - -(-to) (2.24)

where z = 1-!, exp (-2j- i) as defined in Equation 2.19b.

The term Q(.,) has been defined in Equation 2.18k. This function is

identified as the total charge accreted on the open circuited line.

Q(L) = F (q(t)) (2.25)

where

t

q(t) = S J i0 ( )d (2.26)

0

It is interesting to note that the load currents are proportional to line

charge accretion, and that the cable in a sense tries to integrate the waveshape of

the illuminating X-ray. A detailed exposition of the wave structure follows.

2-3.1 Time Domain Response of a Resistively Loaded Lossless Line

The frequency domain equations for ILl and IL2 can be inverted to the

time domain by Fourier theory. The equations for load currents are of the form:

I = Qi -e' ) (2.27)L ,A I-7o F S exp (-2jwT)

Using the binomial series expansion for 1/.'. (reference 2), 1L becomes:

L  ( -) n exp (-2j-nT) (2.28)n=o

so that for resistive loads, i.e., Fo and i"S both real,

iL(t) S'o )n f(t-2n,) (2.29)

n=o

33



where f(t) is causal so that the uper limit of the summation of EQuation 2.29
may be changed from c to n , and the followin' definition is implied:

(o S )n = for n=o (2.30)

when either F0 or 's or both are zero.

Noting too, that

Q(w) exp (-jWtO) = F (q(t-to)) (2.31)

enables one to write, for the lossless resistively terminated line:

iL (t) = o qt-2n-)
n2-2 ( 1 _,S  T2 q (tn

- n_ (2 oS) (I-Si q (t-T cose -(2n+l)T) (2.32)

o=  (FOSn q (t-t coso -2nT)-2 (rot' -~ ST 2 q
2; 1" ) T 2 )q (2.33)+)-r

n--o
i ( ) -1o t-TT (F F nq ( -r c s 2

n=M (F )n( 0o )q (t- os (2n+2)T) (233

ushere, T has been defined in Equation 2.18:

These eqijations are valid only for t>t-o osn). The case of an air line, i.e., T-T o,

is addressed separately below.

The currents in either resistive load are sums of the waveforms as given

in Equation 2.26 for t>.o and g(t)=O for t<o for the accreted charge.
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These summations can be regrouped by introducing two functions, which are dimension-

ally currents:

ia (t) = 2L 2  q(t) - q(t-, o coso-T) (2.34a)

The load currents become:

n=,: Sn
iL (t)L = (1-r0 ) (ot' S ) i a (t-2nT)I n=o

(2.35)
n=-

+ (1-r )FS  o (FOFS)n . b (t-T-2nT)
n=o

n=oo

L2 (t) = I (Fo1S) n ib (t-2nT)
2no

(2.36)

+ (II ,0Y (r I'S? )n a (t--i -2n -r
n=o

The structure of Equation 2.35 allows one to see that the initially

incident pulse on load Zo is ia. This pulse is followed by re-reflectance of ia

off load Zs, plus the reflection of 'b initially incident on load Zs, plus its

re-reflections.

2-3.2 Resistively Matched Line

Equations 2.35 and 2.36 are vastly simplified when the line is matched

at both ends, i.e., when uo = ,s = 0. In this case, there is no reflection off

either load, and the load currents are equal to the first incident pulse:

1L (t) = ia(t) =- 2 q(t) -q(t- 0 cosO-T) (2.37)

(t) = ib(t)= --- q(t-T o cos) -q(t-T)$ (2.38)aa2 s t T

again subject to the restriction that T > T 0costO.
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2-3.3 The Electrically Short Cable

The case of a uniformly illuminated short cable provides some additional

clarification of the meaning of Equations 2.35 and 2.36 for load currents. For

simplicity, the case where 0=1/2 is considered, for which (Equation 2.34) the

incident pulses become:

ia(t) = i b(t) = 2- (t) - t-) (2.39)

where
t

q(t) = S f i 0  d with A(x) constant

0

From Equation 2.35, the current in load 1 becomes:

i L (t) = (1-I'°)n: (r rs )n ia(t-2nT) + rSi a(t-T-2nT) (2.40)

The current in load 2 is also given by Equation 2.40 with ro interchanged with rs ,

because the cable is assumed to be instaneously and uniformly illuminated.

Since the one way cable transit time is defined by Equation 2.18f, the

pulse ia strictly goes to zero as T goes to zero, and therefore, iLl goes to zero

too. However, if or,- writes for ia(t) the integral expression

t

ia(t) = -- q(t) - q(t -1 S f io(i)d (2.41)

t-T

one may approximate the integral by
t

J i o(;)d T io(t) (2.42)

if i0 is slowly varying over the time interval T. This relation provides adefini-

tion of what constitutes an electrically short cable with respect to a drive pulse

io(t). With this relation, ia(t) simply becomes:

S
i a(t) = - io(t) (2.43)
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Now if load 1 is matched so that ro = 0 and load 2 is open so that

Fs = 1, then from Equation 2.40

iL 1 (t) = ia(t) + ia(t-T) (2.44)

independent of cable length. When tis small so that

ia (t) = a(t-[) = - io(t) (2.45)

then the well known result

iL (t) = S io(t) (2.46)

is obtained.

The case where load 1 and load 2 are equal and resistive is somewhat more

complex, but tractable. In this case ro = Fs = (9-l)/(q+l) where q = R/Zc . Defining

r = Fo 
= v"S allows one to write from equation 2.40.

(t) = 2 (r 2 n ' ia(t-2nT)+r i (t-r-2nT) (2.47)
L 1 1 +TJn=o 'aa

again independent of cable length. Now assuming, for any value of n, that -is

small enough so that

ia (t-2ni) _ a (t-T-2nT) (2.48)

allows one to write

iL (t) = 2 1 f r2n (+r) ia (t-2nT) (2.49)

One may, with suitable caution, go further and assume that

ia (t-2nT) = ia(t) (2.50)

37



for all times of interest, and then by identifying the binomial expansion for

(l-r 2) 1 one obtains:

SL()= 2(1:ij)-J) i a(t) = ia(t) (2.51)

With i a(t) = S/2 i (t) one finally obtains for the short cable

il(t) = 1 io(t) (2.52)

This result simply states that the cable source term divides equally

between the two loads. However, the application of Equation 2.52 to any specific

case depends on load resistance R and pulse shape i o . Clearly, for a rapidly vary-

ing i (t), or a bipolar i (t), both 2.42 and 2.50 may be readily violated, and

effects arising from cable energy storage may become important to the computation

of load current rise time/fall time, as well as to the duration of the trailing

edge of the load current pulse. The effects of r are also implicit in the use of

2.50. As r2N approaches an acceptably small number so that Fquation 2.50 need only

be valid for n..N, then 2.52 is an acceptable approximation. Therefore, the closer

r is to zero, the less terms will be necessary in 2.49 for convergence and the more

accurate 2.52 will be for a given i (t) and given i small. But even for small 7,

when Ir-l , Fquation 2.52 is not valid. As r -+l, the cable capacitance determines

the load pulse shape, since the cable will begin to charge faster than charge can

flow thru R. As r ,-l, the cable will ring, albeit at a high freuqency, because

the energy absorbed per cycle is low, regardless of i. Clearly, when r = -1, the

cable is truly shorted and being lossless, will ring forever so that 2.52 is not

valid at all.

Thus, the derivation of Equation 2.50 is offered as a heuristic indication

that the more complex expression of Equation 2.40 is consistent with elementary

Kirchoff's laws applied to lumped element representations of the cable source

pro bl em.
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2-4 ILLUSTRATE GENERIC RESULTS

Because the load current pulse waveforms previously derived are quite com-

plex summations of pulses, this section provides some numerical and graphical re-

sults which highlight the nature of cable direct drive.

In Section 2-4.1, important energy relations are provided which relate

the absorbed load energy to load resistance, to time, and to cable length.

In Section 2-4.2, the effects of angle of incidence and cable length for

a square pulse driver on a matched line are developed.

2-4.1 Energy-Time Relations in Various Resistive Loads

An important phenomenon in a cable with distributed current sources is that

the energy which can be extracted from the cable is a strong function of the termina-

tion loads. This section provides some insight as to what these terminal effects are.

Equations 2.23 and 2.24 have been analyzed via a numerical Fourier inverse

with a uniformly distributed critically damped current driver of the form:

iO(t) = I,(-)exp (--m)u(t) (2.53)

where ID = peak current source in amps per meter, tm = time of peak amplitude, and

u(t) = Heaviside unit step function. The cable is assumed to be instantaneously

illuminated, so that -) = '/2. The cable is assumed to be loaded at either end

with a resistor R so that 7o 
= Zs = R and ro = I's = r. With ID normalized to

unity, the energy in each load has been obtained for study by a computation of the

running integral
t

EL(t) = R fijL  
(2.54)

0

where iL(t) is the load current as a function of time. The integration was per-

formed via a simple Simpson's rule from the time trace obtained by the numerical

Fourier inversion of the current spectrum.
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The results of these computations are shown in Figure 10 where the

normalized energy has been plotted as a function of = R/Zc with t = -. EL has

been arbitrarily normalized to indicate relative behavior of EL versus and cable

length S. Since S is proportional to cable transit time T (Equation 2.18f), S has

been indicated by T. The time T90 is a measure of driver pulse duration, and is

equal to the time when the driver pulse delivers 90% of its total energy to a re-

sistive load via the action integral relation:

0.9 J i0
2 (t)dt = j T0 (t)dt (2.55)

0 0

The results of Figure 10 show that, as cable length is increased, the

total energy absorbed by the loads is increased. Furthermore, Figure 10 shows

that as load impedance is increased, the energy the load absorbs is also increased.

For the geometry analyzed, equal loads at either end, each load receives one-half

the energy delivered by the cable. In the limit, for R>>c, the loads absorb all

the energy in the cable when open circuited, namely:

Emax =L Q 2/ C  (2.56)

where QD is the total accreted charge and C = T/Zc is the total cable capacitance.

For the pulse shape under consideration QD is given by:

im (2.57)

QD = SI e tm =  q(t)

where e is the Napierian base. Since QD is proportional to cable length, as is

total cable capacitance, the maximum energy available from the cable is also pro-

portional to cable length.

On the other hand, for R<<Zc , the energy absorbed is significantly less

than the total energy available in an open circuited cable. The physical explana-

tion of this phenomenon lies in the fact that low impedance loads suppress the

line voltage as incident waves are reflected, thereby reducing the amount of

energy the cable can provide. It is an important, as well as interesting observa-

tion to note that the current drivers are assumed independent of line voltage and

that consequently, the conservation of charge flow is the controlling law, making

40



Z-

2f a- C) C

LU LUJ

C: C) u) C

4u LU -

C)

V ) H U

LU L

CL N
C-

-S

Lu
0

INN

Nm
C

0

tow AAA 0

fw)
2 2 10 N

d OVO NI O M303ZIV~bC

410



the available cable energy strictly a function of the voltage level which the

cable is allowed to build up to.

Of interest in Figure 10 is the knee in the energy curve, i.e., the

value of (R/Zc) below which energy falls off as (R/Zc) is decreased. The location

of the knee is a function of the electrical cable length, relative to drive pulse

duration T90 . A cable possessing a one way transit time t which is signficantly

longer than the duration of the drive pulse io will almost fully charge before

the effects of end terminations can act to reduce line voltage. Thus, longer

cables are capable of delivering higher energies regardless of termination.

Some specific examples have been plotted in FigureslI through 15. The

current driver has been taken as a square pulse with a constant ID'Tp product of

30 Ans/m. For these figures the cable length has been held constant at 3m with

a dielectric constant equal to 9. The curves were derived from Equation 2.54

using Equations 2.32 and 2.33 as the load currents through pure resistive loads.

The five plots present a family of curves for loads between 0.05Q to 5OkQ and for

pulse widths between 300ns to 3ns.

The effect of the dielectric constant on the rate of energy absorbed in

the load resistance for values of ZL between 0.05s to 50k.2 is shown in Figures

16 through 19 for value of £=l (vacuum) to 81 (water). For values of most typical

cable dielectric materials with cr between 1 and 3 the variation in energy for

matched loads is relatively small and increase to nearly a factor of two between

these limits for values of i>>l or «1.

The effect of the cable length on the temporal dependence of the energy

absorbed in the load resistance is shown in Figures 20 through 23. As the cable

length increases from 0.3m to 30m

E (t,r[)---O-E (t,q - I )

and Emax (I), Emax(rq-I )---wEmax (ZL=Zc )

That is the maximum energy in the load impedance becomesindependent of the load

impedance for long cables. Furthermore, the maximum energy limit increases as the

cable length increases from 0.033 ii' for S = 0.3m to 33J for S = 30m.
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The effect of the characteristic impedance on the absorbed energy is

shown in Figure 24 for Zc = 5 2 and 500Q and a family of load resistances between

0.005 2 and 500kQ.

The energy limit (Emax) which is absorbed in the load impedance is sum-

marized in Figures 25 to 28 as a function of , the load impedance normalized to

the cable characteristic impedance. The summaries show the variation of Emax

versus n in terms of a set of parametric curves. The parameter variables modeled

are: 1) pulse width (TO=3 to 300ns) with constant total charge, i.e., Io'Tp 
=

constant (30A'ns/m) in Figure 25, 2) dielectric constant (c=l to 81) in Figure 26,

3) cable length (s=0.3 to 301m) for three values of Er (1,3,9) in Figure 27 and

4) cable impedance (Zc=5 to 500Q) in Figure 28.

Figures 29 and 30 summarize the maximum energy absorbed in the load as

a function of the cable dieI-ciric constant for a family of normalized load impe-

dances. The two figures considcr the _:pecial cases for cable characteristic

impedance of 50 2 and free space (377.:). Figure 31 shows the variation of absorbed

energy with dielectric constant similar Lo Fiqure 29 but with the pulse width

increased from 30ns to 90ns for the same ID (lA/n). In general the absorbed

energy increases as the pulse width increases at a rate which is higher for larger

q. An analogous situation is illustrated in Figure 32 where the cable length is

shortened from 3m to O.3m in comparison to the parameters in Figure 29 with the

pulse width held at 30ns.

Equally important as the total energy into each load is the rate at

which the energy is deposited, since energy rate is a measure of dissipated power.

As indicated by the time expansion for iL(t) with '1/2 in Equation 2.40, the load

current is a series of pulses whose shape depends on line delay - and reflection

coefficients F. Thus, the instantaneous power in each load can be expected to peak

periodically. In a real system, the instantaneous power may not be as important

as the total energy accrued in the load by N successive reflections. In order to

measure the energy rate then, an arbitrary time reference is introduced, namely

the time at which 90 percent of the total energy is absorbed by that load, denoted

tg0 . The underlying reason for this time reference lies in the factthat, theoreti-

cally, a mismatched cable will have finite, albiet vanishingly small currents for
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times much greater than t 9 0 . Mathemetically, t90 is obtained from the relationship:

EL(t9O) = .9EL(o) (2.58a)

or via the equivalent action integral relation

t9  (t)dt = 0.9 iL2(t)dt (2.58b)

0 0

A plot of normalized t90 versus fl=R/Zc is shown in Figure 33 for the

same condition from which Figure 10 is obtained. For the longer cables, energy

is deposited in the load most rapidly when the cable is nearly matched, as has

been indicated by D. Tasca, et al (reference 5). When a longer cable is mismatched,

the longer wave transit times induce lengthly oscillatory ringdowns in load currents

so that each reflected wave spends significant time traveling betwen loads. Thus,

the time for the load to absorb energy from the cable increases rapidly as

varies from the matched condition. Figure 34 shows a plot of normalized t5 0 (the

time required for load to absorb 50% of the total energy) for a family of curves

with the dielectric constant between I and 9 and for cable lengths between 0.3m

to 30 meters. Figure 35 shows the normalized plot for a family of values of the

drive pulse width.

For electrically short cables, the load current tends to converge to a

wave shape proportional to the driver pulse

L (t 
S o~

as indicated in Section 2-3.4 (Equation 2.52) so that tgo convertes to Tp. It

is interesting to note that for the cable where Tis approximately equal to T

t90 increases as R gets small. This is exactly the point of caveat of the deriva-

tion of Section 2-3.3, namely, that when the cable delay is a significant fraction

of pulse duration, mismatches produce significant ringdowns. The plots of t90

and t50 exhibit rather broad based minimums in Figures 33 to 35. These minima

are a function of driver pulse shape, as well as the line parameters T andY?
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9
2-4.2 Square Pulse Drivers on a Matched Line

Equations 2.35 and 2.36 show that, for a resistively loaded lossless trans-

mission line, the load currents consist of sums of fundamental incident pulses which

are reflected and re-reflected off the mismatches. When the transmission line is

matched, r. = 0 and rs = 0 so that the load currents become simply:

(t) = ia(t) = 21 q(t) - q(t-T0 cose-T) (2.59)

1k[2

L(t) ib 2v(t) = q(t-T cose) - q(t-T)$ (2.60)

These equations are useful to study the effects of angle of incidence 9, line

delay T, and X-ray propogation time To. Important relationships between T and To

will emerge that help place the concept of an electrically short line on firmer

footing.

For simplicity, assume io(t) to be square pulse driver, of strength ID

and width Tp. Then, for an arbitrary angle of incidence 9, line delay T, the load

current waveforms are provided in Figures 36 and 37 by direct application of Equa-

tions 2.59 and 2.60. The peak load currents, rise times, full width-half maximum

durations, and total energies of each waveform are provided in Tables 2 and 3

where the load resistances are equal to the line characteristics impedance because

of the assumed matched condition. Except when T=To and 9=0 the waveforms are

trapezoidal. In addition, the rise time of the load currents is, in general, a

function of T, Tp, and (io cos 9). The distinction between what constitutes an

electrically long line and a short line is very clearly defined*. Technically

short and long line waveforms are dependent on the load location, since the load

current rise times and pulse amplitudes are a function of where the load is with

respect to illumination. Load 1 (z=o) is assumed to be illumined before Load 2

(z=s) as in the derivations of Section 2-3. However, the line can always be con-

sidered short (when the line is matched) for a square pulse if

Tp > I + To coso

* for this special case, see Section 2-3.3 for the general case
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F

and long if

Tp T COSO

Intermediate pulse widths, namely

T-T ° coso < T < T+ oT COSO

result in either "long" or "short" line responses, depending on load location. The

total incident charge on one of the two loads may be noted as

QD = S IDTp/2

and the peak load current is directly proportional to QD in all cases when '<T,.

The peak current is also a function of line wave velocity vp when the line is long,

and the faster the wave velocity, the higher the peak current, since the accreted

charge tends to arrive faster. When , < To, the ratio of short line peak current to

long line peak current in both loads is somewhat less than the ratio of line lengths,

because the longer lines tend to keep somewhat more charge in the lines as a func-

tion of time.

In the limit, when vo = vp and o = 0, Table 3 shows that the peak line

current is independent of T in load 2 and is exactly T in duration regardless of

line length. In load 1, the peak of the long line pulse is ID Tp vp/4 where vp = vo .

Since Tp < 2T = 2S/v o, the peak current is less than or equal to SID/2 in load 1 for

the long line.

Thus, it is seen that for very long lines, significant changes in pulse

amplitude and duration can be expected to occur when the line is not instantaneously

illuminated, i.e., when o f n/2. In particular load 1, first illuminated, receives

more energy than load 2 when both loads are matched. However, this is compensated

somewhat in that the pulse duration in load I is longer than in load 2.

Because of the complexity of the line voltage equation (Equation 2.13),

little has been said about voltage other than to recommend a numerical Fourier

inverse for its computation. However, the results of Figures 36 and 37 provide some
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interesting insights to the terminal open circuited voltage for a square pulse

driver. With QD = SID Tp = the final accreted charge, the open circuit cable voltage

is ultimately

Voc Zc zSI0 T c  (2.61)
T =

On the first reflection, the open circuited line terminal voltage is simply

Voc 2i a (t)Zc at Load 1 (2.62a)

V'oc = 2 ib(t)ZC at Load 2 (2.62b)

where the superscript denotes the voltage due to the first incident pulse. For both

loads,

Voc Voc

except in the case of load 2 for a long line (Figure 36f). With ( (Tp+T o cose)

SID T SI
peak V' = 2 Z> - Z = (2-63)oc 2(-T o cose) c T c oc

That is to say that the peak open circuited first reflection terminal voltage at

load 2 is greater than the voltage which results from Equation 2.61.

Because of reflections, this voltage peak will occur at terminal 1 on the

second pulse. Since the cable is assumed lossless, the cable will ring ad infinitum

and never settle to a quiescent Voc.

It is stated without proof, that when 0 = 7/2, Voc QD Zc/T is the maxi-

mum peak terminal voltage and also the peak line voltage.
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SECTION 3

GENERAL MULTIWIRE TRANSMISSION LINE THEORY

3-1 BASIC EQUATIONS

A multiwire transmission line is defined as a collection of parallel

conductors, all of which are separated from a reference conductor by dielectric

material. For the cases of interest in this report the transmission-line is as-

sumed to be perturbed by a current source term driven by incident ionizing radia-

tion. In the following sections we will sketch the origin of the defining equations

for a multiwire transmission line and in Appendix I, II and III, we will consider

detailed solutions and the meaning of the various terms that appear in these

equations.

Let us consider a length AX of the multiwire transmission-line consisting

of N conductors and a reference conductor. Each conductor will have an inductance

and a capacitance with respect to the reference conductor and with respect to every

other conductor, which we denote by LAX and CAX, where L and C are inductance and

capacitance per unit lenqth respectively. The voltage drop across .X is equal to

the product of the inductance of this length of the transmission line and the time

rate of change of current summed over all conductors and the reference conductor:

AVi -(Lij )" X (3.1)

The decrease in current across this length of line is equal to the current that is

shunted across the distributed capacitance plus the current source. The change in

the current is given by the capacitance multiplied by the time rate of change of

the voltage plus the current source:

av.
Ali -(Cj )AX 3+.2

S at Di(3.2)

where (ID)i is the current source per unit length for wire i.
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In the limit AX-<O, these equations become

3V.
3 - L. @I 

(3.3)3x j t

;I..
1x -C __ + (ID1 (3.4)T ij t Di

In the remainder of this section we will adopt a matrix convention and so write the

transmission line equations in the following way

(3.5)
;X at

aT +V
a C - -t + ID  (3.6)

The starting point of the previous derivation was the assumption that the

line could berepresented by a collection of segments each with a distributed capa-

citance and inductance along the line. A more rigorous derivation would start with

Maxwell's equations appropriate to guided waves and by making the assumption that

the electric and magnetic fields are both perpendicular to the direction of propo-

gation and to each other (TEM mode) the previous set of differential equations

would be obtained.

3-2 NATURE OF THREAT

In this section we derive the features of multiwire transmission line solu-

tions which are necessary for arriving at a practical engineering method of specify-

ing current drive levels for the multipoint, multiwire current injection technique

which has been developed. As has been noted in the Section 3-1, the threat to the

interface circuits is the energy arriving at the terminations due to the distributed

current drivers ilonq the caDle length. The exact wave shape at the termination

depends not only on the parameters of the cable (current drivers, characteristic

impedance matrix, propoqation velocity), but also on the termination impedances

themselves. Similarly, the actual energy which is delivered to any particular load
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also depends both on the cable parameters and the terminations. Thus, to ascertain

the magnitude of the threat to any particular interface, it is necessary to consider

how the signal arriving at that interface depends on all the other parameters of the

problem. That is, a worst case approach must be developed for specifying this threat.

While it is relatively easy to find upper bounds for this threat (put all current

into a single terr'ination), this naive approach can lead to excessive levels which

will be above any physically realistic possibility. Instead, it has been decided to

look at the multiwire interface threat in detail and extract a physically realizable

worst case; that is, not just an upper bound, but a least upper bound.

It is the purpose of this section to explore the nature of interface

threats due to multiconductor transmission lines driven by X-ray generated current

drivers. The physically realizable worst case will be determined. An engineering

prescription will be developed for specifying the current drive levels required to

realize this worst case when implementing multipoint, multiwire current injection

on component boxes.

The procedures for developing the prescription relies on the method of

successive complication. An ideal baseline model is chosen for developing the neces-

sary concepts. A definitive solution is presented for this model. Departures from

this ideal are then discussed by successive relaxation of constraints. The same

procedure is followed within the baseline model. First, the nature of the interface

threat for a single-wire to shield transmission line is reviewed. Next, the simplest

multiwire line which includes coupling is discussed, the two-wire to shield line.

Finally, the general multiwire line is discussed, and the results related to the pre-

vious discussion. The engineering prescription then becomes apparent.

3-2.1 The Basic Model

The model chosen for the baseline investigation is that of an ideal,

loss-less ni~lticonductor transmission line which may be described by the equa-

tions of "quasi-TEM' transmission line theory. Thus, the assumptions are:

i) The propogation may be described by Equations 3.5 and 3.6.

ii) The line is combed and uniform,i.e., C and L are independent
of X and t.

iii) The current driver Iy is uniform along the line. This cor-
responds to photon illumination uniform and perpendicular
to the cable run.
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iv) All modes of the line have the same propagation velocity v
(see Appendix I). This assumption simplifies the analysis
and is not far from reality. Mathematically, this require-
ment places a constraint on the transmission line matrices,
[ and C, i.e.,

L C C L 1L (3.7)

V

where is the unit matrix.

v) For simplicity, we assume the line to be symmetrically ter-
minated. That is, the reflection matrices for both ends
are identical.

vi) Only passive resistive terminations are considered. Re-
active terminations dissipate no energy and would increase
the scope of the investigation significantly.

vii) All terminations are wire-to-shield only. No cross-wire
terminations are considered. This corresponds to the situa-
tion of primary interest in the realistic deployment of such
cables.

With the above assumptions, a closed form analytic solution of the problem

may be obtained. The details of this solution may be found in Appendix II, while

details of the energy deposited in the loads may be found in Appendix III. These

solutions will be used extensively in the following discussion. Additionally,

generalizations of the solution will be used when discussing the relaxation of some

of the basic model constraints.

3-2.2 Single Wire Line

The general solutions given in Appendix II for a multiwire line of course

also gives the single wire (to shield) solution. Let R be the termination resis-

tance, Zc the characteristic impedance of the line, and n = R/Zc the impedance

ratio. The reflection coefficient F is given by

- lr- (3.8)

and varies from -1 for a shorted termination, to +1 for an open termination. For

a current driver ID (amps/m) in an electrically short cable the current I in the

load is given by

I(t) = V

00 i+ 2n (AQ(t-2ni) + FAQ (t-(2n+l)T)

n=O 80



where T = s/v is the cable propagation time, v is the propagation velocity in the

cable, and s is the cable length. The basic pulse ia is given by

.AQ(t) q(t) - q(t-i) (3.10)

where

q(t)/s =f ID(t ') dt (3.11)

0

is the basic charge transfer per unit length developed by the current driver ID(t).

This is the same relation developed in Section 2-3.3 for the special case of an

electrically shot cable with 'o = i's.

For the purposes of further discussion, it is assumed that the time history

of the current driver ID is a square pulse. Evaluation of the expressions for other

pulse shapes will be obvious. Let Tp be the width of the square pulse, and ID the

amplitude of the pulse, as shown in Figure 3,a . The charge transfer q(t) ramps

up to a total transfer Qo=IDTp in a time Tp, as shown in Figure 30. . The basic

pulse in the termination AQ is somewhat different depending on whether the cable

is long compared to the pulse (TiTp). For a long cable, ,AQ ramps to a peak value

Qo = IDTp in a time Tp, remains at this value until r and then ramps back to zero

at a time Tp + i. For a short cable, AQ ramps to the smaller value of IDT in a time

T, remains at this level until Tp, and ramps back to zero at a time Tp + T. These

wave forms may be seen in Figure 38c and 38d .

The important point is that the waveform AQ (t-nt), which appears in

Equation 3.9, is non-zero only in the interval nTp<t<(n+l) Tp+T. Outside of this

interval .Q(t-ni) is zero. Thus, the successive terms in the series of Equation

3.9 appear at later and later times. Thus, the terms are easily interpreted as

the successive reflections from the terminations, with the primary reflection occur-

ring at either end, followed by propagation to the opposite end and reflection back

to the termination of interest. As each pass through, the termination dissipates
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some of the energy of the pulse; the successive terms arrive with smaller and smaller

amplitude (i.e., the pulse is multiplied by a power of p).

The primary pulse arriving at the termination is most easily seen by con-

sidering the special case of matched termination (Tl=l, r=O) and T is small forany value

of n, then the infinite series of Equation 3.9 reduces to

l(t) =-j-- ,Q(t) (3.12)

which is the same as derived in Section 2-3.3 with '=fn/2 . Thus, the expression

reproduces the well-known fact that matching terminations give rise to no reflections.

The current which flows in the termination is directly obtained from the information

about AQ previously presented. It takes on its maximum value only for T>Tp. For

mismatched terminations (rO), the current waveform takes on a different character

depending on whether there is a high mismatch (n>l, r<O) or a low mismatch (n<l, 7>O).

The first case has the character of an over-damped ring down of a charged capacitor,

while the second case waveform has the character of an under-damped R,L,C circuit.

These features of the termination waveform may be seen in Figures 39 and 40 which

give the current waveforms for a moderately long cable (T=Tp) for significant high

mismatch (R=10Zo) and low mismatch (R=O.lZo).

Several other features of the solution should be noted. The load current

scales directly with the source current 10. It also scales with the phase velocity

v. For long cables, the current scales as vQo=vIoTp, while for short cables, it

scales as v1DT=IDs. The load current depends on the load resistance only through

the dimensionless ratio n=R/Z o. Finally, the time dependence of the solution in

terms of a dimensionless time variable t =t/i depends only on the pulse length

through the dimensionless ratio r=Tp/T. Taken together, this means that the solu-

tion space depends only on the parameters n (equivalently r) and c, and that other

solutions may be obtained by scaling. Of course, the load voltage may be obtained

from the -urrent by multiplication by R.

While load current and voltage are of some concern for semi-conductor

terminations, it is recognized that many major failure mechanisms are associated

with the total energy deposited in the load, and the rate at which the energy is
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deposited. Thus, while the current in the load reaches a maximum as the length 
of the cable is increased <f loTp for a matched load), the length of time the cur
rent flows continues to increase as the cable length increases. This implies that 
longer cables will deliver more energy to the load even though the peak current 
and voltage may be no worse than for a shorter cable. The development of worst 
case considerations for semi-conductor loads demands that these energy concerns be 
addressed. A central feature of the approach to . ~ discussed below is a careful 
accounting for worst case energy capability. This criterion is taken to be of prime 
importance. The features of this energy capability are now discussed for the single
wire transmission line. An understanding of this capability will be central to the 
approach for multi-wire lines. 

In Appendix III, a derivation has been given for the energy which is 
deposited in the loads on a multiwire transmission line. For a single wire long 
line (T>Tp) this expression reduces to 

(3.13) 

where 

( Q~)· s 
s 2C (3.14) 

and C = capacitance per· unit length. In these equations, the symbols have the 
same meaning as above, i.e.,~= Tp/T is the characteristic time ratio, Q0 ~ IoTp 
is the charge transfer per unit length, C is the capacitance per unit length of 
the line, s is the line length, and r the reflection coefficient. Equation 3.14 
may also be written in terms of the characteristic impedance of the line Zc = v-lc-1, 

= ...!... T2 Z I2 
2 p c D • 

(3.15) 
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For shorter lines, (T < Tp) the expressions for the energy deposited

become more complicated, as is noted in Appendix III. However, the resulting expres-

sion always gives rise to an energy less than that implied by Equation 3.13 , i.e.,

more and more positive terms are subtracted from this basic quantity. Furthermore,

as the termination impedence becomes very large (R-.,r ) +1), all of the expressions

tend to Emax' no matter what the ratio of Tp to T. For further discussion, it is

therefore sufficient to consider the case T < -c, as given be Equation 3.13 .P
The maximum energy available Emax is simply the amount of energy developed by charging

up the capacitance of the cable with the total transfer Q0  Naturally, this quantity

scales linearly with the length of the cable. It is thus possible to discuss the

per unit length energy capability of the cable. Note that this quantity depends not

only on the magnitude of the current driver ID (through Q0 
= IDTp) but also on the

cable capacitance (or equivalently the characteristic impedence Z ). Note that forc
very long cables (<<l), the energy delivered to the load is nearly independent of

the load resistance. Shown in Figure 41 is the normalized energy E/Emax as a function

of n = R/Z0 for various values of t. Note that this quantity is a monotically increas-

ing function of the load resistance R. Shown in Figure 42 is the same information

displayed in absolute units of E which shows the increase in energy with cable length.

Not only is the total energy of importance for semi-conductor considera-

tions, but also the energy-time history. Shown in Figure 40" are the energy time

histories for three identical cables with low, matched, and high impedence termina-

tions (n=0.l, 1, 10). The solution is for a long cable (T = T p), so the final energies

are very nearly the same. As is evident from the figure, the energy is deposited in

the load much more rapidly for the matched load as compared to the mismatched loads.

While no convenient analytic expression has been developed for the length of time

required to deposit a fixed fraction of the energy, it is evident from the Equation

3.9 that the matched condition clearly gives rise to peak power in the load.

Indeed, for very long lines, since the final deposited energy is nearly independent

of the load, it is clear that the matched load represents the worst case. Indeed,

the time to deposit the energy in the load is minimized by matching the line. Shown

in Figure 44 is a summary of the time to deposit one half the final energy as a

function of termination impedence. The deep minima for most line lengths is apparent.

This plot was developed from an extensive numerical evaluation of the solution for

the indicated parameter range.
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U
Sufficient information has now been presented about single wire solutions

to proceed to the simplest multi-wire model, that of the two-wire-to-shield trans-

mission line.

3-3 TWO WIRE ANALYSIS

It is of interest to consider, in a multi-wire bundle, how one can couple

current from one wire to another. The obvious place to study such effects is the

two-wire bundle. In the Appendix we have considered the analytic analysis of the

two-wire bundle and have shown how the two-wire bundle reduces to single wire solu-

tions. Such a reduction is extremely useful in terms of conceptualizing what is

happening in the coupling, but the obvious way to demonstrate the coupling is to

present the results of the current and energy, for example, that appear in the two

wires when only one is driven. The current that flows in the un-driven wire is all

coupled current. We have analyzed various two-wire bundles in order to consider

various coupling effects.

The analytic solution that is presented in Appendix II assumes that there

is only one propagation velocity. In general, in a multiwire bundle, there can be

many propagation velocities, which are a source of coupling from one wire to another.

While it is beyond the scope of this report to detail the consequences of this coupl-

ing, some calculatio-.. have been done on a two-wire bundle with two different phase

velocities. The analysis seems to indicate that, particularly at low impedance ter-

mination, there can be a significant coupling effect due to the different phase

velocities. The remainder of the calculations have been performed on two-wire bundles

with one phase velocity. One two-wire bundle was constructed using the same capaci-

tance matrix as the multi-phase velocity bundle and by choosing the inductance matrix

in such a way as to give one phase velocity. The other two-wire bundle was constructed

in such a way as to represent a seven-wire bundle where six of the seven wires are

tied together. Let k represent the wire of interest and

vi=v i t

Vi = V i(3.16)
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where V.i is the voltage of the i th wire with respect to the shield. The relationship

between charge and voltage is again

Q. M c iVj (3.17)

If we sum over allI i , i f .we have

N

N N

EZC itV z + C ijV

N N

and

N

=

= ijtv + 9.

~ +(Z 91 )v(3.19)

if we think in terms of two wires, Q 1 and Q2and let

Q = Q1 V1  V1

Q V 2=V (3.20)
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p

we have

QI= CllV 1 + C12V2

Q2= C12 V1 + C2 2 V2  (3.21)

where CII= C 11

Nc12=-EcIJ 2- C21 = ji

C22= t C. , (3.22)

1i~ 1,

We have considered a seven wire bundle and picked out the wire with the largest

driver so that 1=3 in the seven wire bundle.I
In Figure 45 and 46 we plot the ratio of E/EMAX for the bundles TW2 and

TW3 respectively. In this ratio, E is the energy dissipated across each termina-

tion for the un-driven wire and EMAX is the maximum energy capability across each

termination for the driven wire. The quantity E/EMAX is plotted as a function of

R2 for various values of RI , where R2 is the ratio of the termination impedance

to the diagonal characteristic impedance of the un-driven wire and R1 is the same

ratio for the driven wire. These plots indicate that the coupled energy from the

driven to the un-driven wire approach a maximum value of C2 times the maximum

value of the energy of the driven wire, C is the coupling factor defined in Appendix

V. It is important to realize that the quantity C is always much less than one

for any realizable bundle.

3-4 SEVEN WIRE ANALYSIS

The seven wire line analysis has been performed in order to demonstrate

the basic tenets of the previous sections when applied to a larger bundle of wires.

We have considered various distributions of seven wire drivers which are typical of

groups of seven wires in a larger bundle (37 wire bundle). In these calculations

we have singled out the wire in that distribution with the largest driver and varied

the terminating resistance of that wire as a function of the terminating resistances
of the other six wires. In Appendix VII we present the results of these calculations.
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One basic tenet of our analysis is that one can think of each wire in a

multiwire bundle as a single-wire transmission-line driven by an effective drive

ID given by

N

I I + ciIIi

Di 1

(3.23)

Where I i is the driver for the wire of interest, wire Y , I. are the drivers for

all the other wires, and Ci are the coupling terms.

Ci:Z i j(ZiiZ£)
li t (3.24)

The charcteristic impedance matrix is given by Z and N is the number of wires in

the bundle. We can compute the total energy dissipated for a single-wire trans-
mission line, EMAX' driven by this effective driver using the results of Appendix

III and compare with the actual energy dissipated from the numerical calculations.

Shown in Figure 47-49 are the results of these calculations. The labelling conven-

tion is detailed in Appendix III. On these plots, EMAX is the maximum energy capa-

bility per termination for the wire with the largest driver (including the coupling),

R is the ratio of the termination impedance to the diagonal element of the character-

istic impedance for the wire with the largest driver, and R2 is the same ratio for

all the other wires. It is clear from these plots that EMAX represents the upper

limit for the energy.

3-5 LOSSY CABLE TRANSMISSION LINE

It is of interest to consider dissipative effects in evaluating the

current that flows through the terminations for a cable driven by X-rays. In general,

for any real cable there will be a resistance per unit length along the length of

the cable due to skin depth losses and a conductance per unit length across the di-

electric due to the dark conductivity of the dielectric. In the following para-

graphs, we will discuss how to incorporate frequency dependent conductance and

resistance into the transmission-line equations and present our solutions of these

equations.
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If we allow our caDle to be lossy, the following transmissionline equa-

tions are appropriate:

DV =Lai
-a RIaX t

aI _-CaV GV + 1 (3.25)
2-X at

For convenience we will limit ourselves to single-wire cables and so drop all

vector notations. In these equations R is the resistance per unit length and G

is the conductance per unit length. The method of solution is the same as indi-

cated in Appendix II, and so we arrive the following fourier-transformed equations.

3 iwL?
aX

w aX + T D GV (3.26)

At this point, we will allow R and G to be functions of frequency, i.e.

R = R(W)

G = G(W) (3.27)

Using the same assumptions as made in Appendix II we arrive at the following

equations:

dx
2

d+ I 13

dx
2

where

2
2  w

S - RG + iw(RC + GL). (3.29)
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These equations can be solved, as in Appendix II, for I(w,X) and V(w,X). In par-

ticular, the solution for I(0,w) is as follows

~T(O'W) = 'D( W) 0FRe2k_2 z 0  i k

k i-.Pp e 2ikll Z o+Z L--
I RL [ ] -RZR (2.30)

The notation in this solution is the same as has been used previously with the

following expression for Z0 , the characteristic impedance

Z 0 k/(wc + iG) (3.31)

Since k and Z are functions ofw, it is not possible to obtain directly I(o,t),

given by the following equation

I(ot) - 2 dw T(o,w)e- it(3.33)

We have performed the required integrations numerically using a fourier-transform

code and will present the results of this analysis in Appendix VIII.
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SECTION 4

MODEL VALIDATION

4-1 INTRODUCTION

The key to successfully developing the desired threat definition is an

accurate analytical tool which can predict not only photon responses (i.e., the de-

sired invariant current source terms) but also the esired electrical parameters

required for the maximum energy analysis. Existing tools, such as the CHIC code,

have been developed to provide such information. An interesting characteristic of

these programs, which is associated with the physics of the direct drive phenomenon,

is that the calculated electrical parameter and current driver definitions are derived

from the same set of physical and material parameters contained in the subject cable.

The fact that these entities are not mutually independent of one another provides a

fortuitous situation which can be exploited to advantage.

Since the successful development of the maximum energy concept rests with

the accuracy of such tools as the CHIC code, it is highly desirable to obtain an

independent validation of the accuracy of such codes before committing extensive

effort based on their utilization. Such a validation is described in this section.

The interrelationship of the current driver and electrical parameter definitions

provides an excellent double check on the code validation conclusions. The cable

type which will be selected is also the baseline multiwire cable type which has been

used as the model for the development of the multiwire analysis technique. An excel-

lent choise for a candiate cable type is the AWG 24 (Raychem 44/0411 space wire), 37

wire foil/film (Copper/Mylar) shielded cable identical to that used in the DSCS III

Spacecraft and in the DSCS III Harness Photon Test.

4-2 CABLE PARAMETER SENSITIVITY-DRIVERS

The very large parameter space associated with any possible multiwire cable

configuration requires a considerable reduction if any meaningful predictive capa-

bility is to be realized. That is to say, we would like to isolate those parameters

which predominantly affect the response of a multiwire cable configuration to inci-
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dent ionizing radiation. In order to effect this reduction, we have employed the

CHIC computer code to perform a large number of calculations in various multiwire

cable configurations. The CHIC code, details of which have been presented elsewhere,
(8-10)is uniquely suited to perform this analysis since it is capable of handling an

arbitrary cross sectional geometry and material configuration.

For this particular cable configuration, the parameter space that is per-

tinent to an SGEMP analysis would include the following variables:

* Individual Wires - Composition, Plating, Size

* Wire Insulation - Composition, Thickness, Dielectric
Constants, Density

a Liner - Composition, Thickness, Density

a Overshield - Composition, Plating, Thickness

* Geometric - Shield configuration relative to
wire bundle, relative positions of
wires, total number of wires in
bundle.

Our approach in this sensitivity study is to consider only those variables

which we feel might realistically be considered in any multi-conductor bundle. In

addition, we have considered how one might reduce these variables even further for

the purpose of a sensitivity study. One example of this is the assessment problem

associated with multi-layered dielectrics surrounding the individual wires of the

bundle, with frequency dependent dielectric constants. We have investigated the

possibility of representing such a configuration with one dielectric with an effec-

tive dielectric constant. The outcome of this investigation(11) has indicated that

it is perfectly adequate, for the purposes of a sensitivity study, to model a multi-

layered dielectric by a single dielectric with an effective dielectric constant.

Such a modeling will certainly indicate the trends in the response as a function

of the various parameters. On the other hand, if one wants to pinpoint the response

of a given multiwire bundle, one has to take into account the details of the multi-

layered dielectric configuration. Such an analysis has been performed and it has

been found that a modeling of the double layered dielectric is critical to accurately

calculating the response of the multiwire bundle.
(12 )
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4-2.1 Sensitivity Study

The following parameters have been considered in our sensitivity study:

e Wire Size - 16-26 AWG

e Wire Plating - Sn, Ni

* Shield Composition - Cu, Al

* Liner Thickness - 1,2 mil

* Angle of Incidence of Radiation

# Geometric Configuration

* Shield Configuration

4-2.1.1 Geometric and Shield Configuration

One question of interest is the dependence of the maximum response in a

bundle to the number of wires in the bundle. Shown in Figure 50 is a comparison of
a 61-wire bundle and a 7-wire bundle. The two bundles are identical, except for the

number of wires. Since the largest response is always on the wire nearest to the

shield, we do not expect there to be a significant difference in the maximum response

from a 61-wire bundle to a 7-wire bundle. In fact, our calculations indicate that

the maximum response for the 61-wire bundle is slightly smaller than the 7-wire

bundle. For this reason, we have considered the 7-wire bundle to be a canonical

configuration representing any close-packed multi-conductor bundle (see Figure 51

and have performed the majority of our computations on it. We have also considered

various packing arrangements of the wires in the bundle; the 7-wire bundle representing

hexagonal close-pack, and have found very little difference. An example of a hexa-

gonal close-pack and circular pack bundle of wires is shown in Figure 52. In addition,

we have found very little difference in the response between a circular and hexagonal

shield, and so have performed most of our calculations on a circular shield configura-

tion. An example of a hexagonal shield is shown in Figure 53.

4-2.1.2 Wire Size

We have considered four different wire radii, ranging in size from 8.0

to 25.4 mils. Shown in Figure 54 are worst case response versus wire gauge. Since

a positive response indicates that the dominant effect is wire emission, we expect

that the bundle with larger radii wires will have the larger responses, and this

is verified by the calculations.
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5.58S N-PLATE

16 GAUGE

2 MIL LINER

ALUMINUM SHIELD
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* Figure 50. Comparison of 61-wire and 7-wire bundle
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SHIELD /DIELECTRIC LINER

CENTER CONDUCTOR PRIMARY INSULATION

Figure 51. Geometric model used for parametric study -

hexagonal close-pack - circular shield
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61-WIRE BUNDLE

HEXAGONAL PACK

- CIRCULAR SHIELD -

IJ

62-WIRE BUNDLE

CIRCULAR PACK

- CIRCULAR SHIELD -

Figure 52. Comparison of hexagonal and circular pack
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Figure 53. 61-wire bundle hexagonal pack - hexagonal shield
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4-2.1.3 Wire Plating and Shield Composition

We have considered Sn and Ni wire plating and Cu and Al shield composi-

tion. Since, again, the dominant effect is wire emission, we expect the largest

response to occur for that configuration which has the largest Z wire plating and

the smallest Z shield composition and this is verified by the calculations, as

indicated in Figure 54.

4-2.1.4 Liner Thickness

The effect of the thickness of the dielectric liner, which is bonded to

the overshield, on the response of the wires in the bundle has been considered.

A thinner liner would result in the shield emission being more effective, thereby

reducing the worst case response for a given bundle. We have considered one and

two mil liners. Shown in Figure 55 is a typical distribution of drivers for these

two liners. It is clear that the response is indeed smaller when the liner is half

as thick, but not significantly smaller.

4-2.1.5 Angle of Incidenceof - Radiation

Shown in Figure 56 are the distribution of drivers for various angles of

incidence. An angle of incidence of 00 gives rise to the worst case driver.

4-2.2 Conclusions

For the purposes of comparing one bundle configuration to another, we

will use as the criterion the maximum response in a given bundle. For the range

of parameters considered in this study, the bundle configuration that resulted in

the largest maximum response had the following parameters:

(a) 16 AWG wire size,

(b) Sn-plated wire,

(c) Al shield,

(d) 2 mil liner thickness, and

(e) 0' angle of incidence.

The maximum response for this bundle was computed to be 6.12 x 10l O

(coul/cm)/(cal/cm 2). If we take this configuration to be the baseline configura-

tion, the following specific conclusions can be drawn from the sensitivity study:
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Figure 55. 7-wire response
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(1) The maximum response is a monotonically increasing function
of wire radius for all material configurations.

(2) Replacing an aluminum shield with a copper shield gives at
least a factor of 0.64 reduction in driver from the baseline
response.

(3) Replacing the tinned wires by Ni-plated wires, gives a factor
of 0.58 reduction in driver from the baseline response.

(4) Replacing the tinned wires byNi-plated wires, and replacing
an aluminum shield by a Cu shield gives a factor of 0.26
reduction in driver from the baseline response.

(5) For all material configurations, a small liner gives a
slightly decreased response for the worst case driver,

(6) The angle of incidence of the radiation has only a small effect
on the worst case driver, and 00 incident is the worst case.

These results indicate the relative insensitivity of a multi-conductor

bundle to realistic variations in the parameter space. In general, if we take the

*maximum response as an indicator, the maximum variation is less than a factor of

ten. Although this analysis has mainly been carried out for one typical blackbody

spectrum, our calculations have also indicated that the response increases with

blackbody temperature, a result consistent with the absence of gaps between all

conductor-dielectric interfaces.

4-3 MODEL DRIVERS

This section will present the results of a complete analysis of the elec-

trical parameters and current drivers associated with 7 and 37 foil/film multiwire

cables. This analysis has been performed using the CHIC code, det.ils of which

have been considered elsewhere.(8) The CHIC code has the capability, not only

of calculating the current sources associated with Photon Direct Drive SGEMP, but

also all the narameters which electrically identify a given multiwire cable. The

electrical parameters can be conveniently represented in matrix form and are completely

analogous to the capacitance and inductance of a coaxial cable.

4-3.1 Foil/Film Multiwire Cable - Specification

We will be considering a 7 and 37 wire bundle in this section. These two

bundles are identical, except for the difference in the number of wires. Each multi-

wire cable consists of N individually unshielded wires within a single foil/film

overshield. In this section, we will specify completely the geometrical and material

configuration which has been used in these calculations.
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4-3.1.1 Individual Wires

The individual wires are Raychem AWG #24 space wire which consists of

pure tin coated, copper wire covered by a combination cross-linked, extruded poly-

alkene and cross-linked, extruded polyvinyldene fluoride dielectric (Kynar). The

extrusion process used for the Raychem space wire is such that there are no gaps

between the dielectric and the conductor. Shown in Figure 57 is a model of the

Raychem space wire with appropriate labels. Table 4 is a table of the correspond-

ing parameters associated with the Raychem space wire which serves as inputs to

the CHIC code.

4-3.1.2 Foil/Film Overshield

The foil/film overshield consists of a Sun Chemical #1132 film-foil lami-

nate made of an electro deposited Copper foil on a polyester (Mylar) film. Figure

58 is a model of the overshield with appropriate labels and Table 5 is a table

of the associated parameters which also serve as inputs to the CHIC code.

4-3.1.3 Geometric Model

We have assumed in these calculations that the individual wires in the

multiwire bundle are hexagonally close-packed and that the overshield is circular.

Shown in Figures 59 and 60 are the geometric models assumed in the calculations

along with the labeling of the individual wires in the bundle. This labeling uun-

vention will be used throughout this section, both in the definition of the capaci-

tance and inductance matrices and in the current drivers.

4-3.2 Incident Spectrum

The current drivers have been computed using the PIMBS-lA spectrum shown

in Figure 61. We have assumed a 20 mil Mylar and 1 mil Al window between the

photon source and the multi-wire cable, and will present all current drivers nor-

malized to 1 cal/cm 2 incident on the cable overshield.

4-3.3 Electrical Parameter Definition of a Multiwire Bundle

There are two capacitive matrices which are relevant to multiwire bundles

of N wires. One, which we will call Maxwell's capacitance coefficients, is defined

by the following matrix equation:(6)

N

Qi = ijj. .. .N
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I Figure 57. RAYCHEM space wire *24 AWG

Table 4. Parameters associated with RAYCHEM space wire 24 AWG

RADIUS DENSITY RELATIVE
3 DIELECTRIC

MATERIAL (mils) (gm/cm) CONSTANT

A r I = 13.0 8.96

(TIN COATED COPPER)

B r 2 = 16.5 1.08 2.25

(POLYALKENE)

C r 3 = 19.5 1.73 7.0

(KYNAR)
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2 B

Figure 58. Foil/film overshield

Table 5. Parameters associated foil/film overshield

THICKNESS DENSITY DIELECTRIC
MATERIAL (MILS) (GM/CM 3 ) CONSTANT

A (COPPER FOIL) t = 0.7 8.96

B (MYLAR) t2 = 0.92 1.35 2.9

2or -
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Figure 59. 7-wire multiwire bundle with labelling convention

Figure 60. 37-wire multiwire bundle with labelling convention
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where Qi is the charge on the ith conductor, V. is the voltage of the jth conductor

with respect to the shield, and C. . are Maxwell's capacitance coefficients. C is
13 th 13 th

the ratio of the charge induced on the i conductor to the potential on the

conductor when all other conductors are at zero potential. An alternative capacitance

matrix which can be determined from CiJ will be labeled (CM)ij. In this definition,

(CM)ii is the ratio of the charge on the i
th conductor to the potential on the ith

conductor when all other conductors have no charge. (CM)ij (ifj) is the ratio ofth 1

the charge on the i conductor to the potential difference (Vj-V i) when all other
conductors have no charge.

The inductance matrix is determined by computing the capacitance matrix

C°. of the identical multiwire bundle without dielectric. The inductance matrix L
13
is determined by the following equation:

(C)ij
L..-
13 C2

where C is the speed of light in vacuum.

The propagation matrix (y2)ij is determined once Lii and Cii are known

and is defined by the following equation:

N
(y 2 )ij LikCkj

k=1

This matrix is, in general, not diagonal; but when brought to diagonal form (y2)D

the diagonal elements are related to the multiwire phase velocities Vi by the

following equation:

Vi (2 D -/
= )i

A knowledge of L and Ci. can also be used to determine the characteristic impe-

dance matrix Zi i of a multiwire bundle which can best be represented symbolically

as:

where Z, L, and C are the impedance, inductance, and capacitance matrices, respec-

tively.
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4-3.3.1 Electrical Parameter Results

In this section, we present the complete 7-wire results and a limited

amount of 37-wire results. In Tables 6-10 are given the complete set of para-

meters for the seven wire bundle. In Tables 11-15 are given the diagonal elements

of all the matrices for the 37-wire bundle.

4-3.4 Fall-Off of Capacitance Matrix

For a given wire, i, in a multiwire bundle, we do not calculate all of

the elements of the capacitance matrix Cii, j=l, 2, ... , N, but only those elements

which correspond to wires that are nearest to wire i. This is justified in light

of the fact that Ci is very small for wire j far away from wire i, and is, there-

fore, for the purposes of any calculation zero. To justify this assumption, we

have computed C1i, j=l, ..., N, for the 37-wire bundle. Shown in Table 16 are

the results of this calculation.

4-3.5 Current Driver Results

Using the geometrical and material configuration described in Section

4-3.1 and the x-ray spectrum described in Section 4-3.2, we have computed the cur-

rent drivers for the 7- and 37-multiwire bundles. The results are indicated in Figure

62 and Tables 17 and 18. The largest driver for the 7-wire bundle is =3 with a driver

of +4.14 x 10- 1 0 coul/cm/cal/cm 2 . The largest negative driver for the 37-wire
10 2bundle is -14 with a driver of -1.27 x 10-10 coul/cm/cal/cm

4-3.6 Comparison to Experiment

It is of interest, once the model drivers and associated electrical

parameters have been computed, to compare results with actual multiwire bundles.

The particular quantities that have been measured are the Norton equivalent current

drivers for a 37-wire bundle and various capacitance, wire to shield and wire to

wire, for that bundle. When comparing theory and experiment, however, it is impor-

tant to keep in mind the fact that the geometrical model assumes a close-packed

configuration whereas there is a certain tendency for the wires to move around in

the actual bundle. It is difficult to make a detailed comparison wire by wire for

this reason. Our model predictions always have the wire with the largest driver

at the outer edge of bundle with the peak % 4 X 10-  coul/cm/cal/cm2 , and the

experimental results give the largest driver ,6 X 10-10 coul/cm/cal/cm2 . The wire
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Table 6. Capacitance matrix C (pf/m) for 7-wire bundle

248.08 -31.86 -31.86 -31.86 -31.86 -31.86 -3s.86

-31.86 225.76 -37.83 -0.55 -0.08 -0.55 -37.83

-31.86 -37.83 225.76 -37.83 -0.55 -0.08 -0.55

-31.86 -0.55 -37.83 225.76 -37.83 -0.55 -0.08

-31.86 -0.08 -0.55 -37.83 225.76 -37.83 -0.55

-31.86 -0.55 -0.08 -0.55 -37.83 225.76 -37.83

-31.86 -37.83 -0.55 -0.08 -0.55 -37.83 225.76

Table 7. Capacitance matrix CM (pf/m) for 7-wire bundle

207.19 130.10 130.10 130.10 130.10 130.10 130.10

130.10 203.05 128.63 110.01 107.64 110.01 128.63

130.10 128.63 203.05 128.63 110.01 107.64 110.01

130.10 110.01 128.63 203.05 128.63 110.01 107.64

130.10 107.64 110.01 128.63 203.05 128.63 110.01

130.10 110.01 107.64 110.01 128.63 203.05 128.63

130.10 128.63 110.01 107.64 110.01 128.63 203.05

Table 8. Inductance matrix L (nH//m) for 7-wire bundle

187.72 40.58 40.58 40.58 40.58 40.58 40.58

40.58 152.11 31.79 12.71 10.05 12.71 31.79

40.58 31.79 152.11 31.79 12.71 10.05 12.71

40.58 12.71 31.79 152.11 31.79 12.71 10.05

40.58 10.05 12.71 31.79 152.11 31.79 12.71

40.50 12.71 10.05 12.71 31.79 152.11 31.79

40.58 31.79 12.71 10.05 12.71 31.79 152.11
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Table 9. Propagation matrix (10-20 (m/s)-2 for 7-wire bundle

3881.29 6.25 6.25 6.25 6.25 6.15 6.25

206.46 3063.77 -37.46 -9.88 -3.27 -9.88 -37.46

206.46 -37.46 3063.77 -37.46 -9.88 -3.27 -9.88

206.46 -9.88 -37.46 3063.77 -37.46 -9.88 -3.27

206.46 -3.27 -9.88 -37.46 3063.77 -37.46 -9.88

206.46 -9.88 -3.27 -9.88 -37.46 3063.77 -37.46

206.46 -37.46 -9.88 -3.27 -9.88 -37.46 3063.77

8I

Table 10. Phase velocities (e-values V (108 m/s) for 7-wire bundle

1.61

1.84

1.80

1.80

1.79

1.81

1.79
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I

Table 15. Phase velocity V. (108 m/s) of a 37-wire bundle

V1  : 1.59 V 2 0 = 1.77

V2  = 2.11 V 2 1 = 1.76

V3  = 1.88 V2 2  = 1.77

V4  = 1.78 V 2 3  = 1.78

V5  = 1.97 V 2 4  = 1.76

V6  1.84 V25 1.78

V7  = 1.85 V 2 6 = 1.76

V8  1.79 V = 1.77

V9  = 1.97 V2 8 = 1.77

Vl0  = 1.84 V2 9  = 1.77

V 1 1 = 1.83 V 3 0  = 1.76

V1 2  = 1.85 V3 1  = 1.75

V1 3 = 1.85 V3 2  = 1.77

V 1 4  = 1.75 V = 1.75

V 1 5 = 1.79 V 3 4  = 1.75

V 1 6 = 1.76 V = 1.76

V 1 7  : 1.77 V3 6  = 1.74

V1 8 = 1.77 V = 1.76
18 37

V1 9  = 1.77

126



Table 16. Capacitance of wire 1 with respect to all wires
37-wire bundle

C(1,1) = 247.29 pf/m

C(1,2) = -30.99 pf/m

C(1,8) = -1.61 X 101 pf/m

C(1,14) -4.66 X 10 - 3  pf/m

C(1,20) : -4.49 X 105 pf/m

C(1,32) = -3.27 X 10 - 6 pf/m
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Table 17. 7-wire current drivers

WIRE CURRENT DRIVER (coul/cm/cal/cm2

1 = -1.60 x 10- 1

2 = 2.64 x 10- 10

3 4.14 x 10-ia0
4 = 6.39 x 10- 11

5 = 5.41 x 10- 11

6 = 6.39 x 10- 11

7 = 4.14 x 10- 10

010 (coul/cm/cal/cID 2

Figure 62. 7-wire current drivers
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Table 18. 37-wire current drivers

WIRE-= CURRENT DRIVER (coul/cm/cal/cm
2

1 6.48 x 10 - 11

2 -4.69 x 10 -I1

3 = -1.34 x 10 - 1 1

4 -8.15 x 10 - 1 2

5 = -2.72 x 10- 11

6 = -8.15 x 10 - 12

7 -1.34 x 10
- 11

8 = -7.18 x 10 -
11

9 -9.26 x 10 - 12

10 -1.62 x 10
-13

11 = -1.62 x 1O-13

12 -9.26 x 10 - 1 2

13 = -7.18 x 10 " 1 0

14 -1.27 x 10-10

15 -5.40 x 10

16 1.78 x 10 - 1 2

17 = -1.38 x 10 - 11

18 1.78 x 10 - 12

19 -5.40 x 10
11

20 1.32 x 10 - 1 0

21 1.37 x 10
-10

22 -1.98 x I0

23 -3.15 x 10-12

24 9.26 x 1012

25 9.38 x 10
-12

26 9.38 x 10
- 12

27 = 9.26 x 10
-12

28 -3.15 x I0- 12

29 -1.98 x 10 - 1 1

30 1.37 , 10-1
0

31 1.32 x 10
-10

-10
32 2.67 x 10

33 4.19 x 10
-10

34 2.65 x 10 - 1 1

35 5.53 x 10
11

36 = 2.65 x 10 "I1

37 4.19 x 10
-I0



with the largest driver tends to be on the outside of the bundle in such a way that

there is a separation between it and the nearest neighbors. We believe, therefore,

that the difference between the model predictions and the experimental data are due

to the fact that the wires are, in fact, not totally close packed. The model drivers

range from -1.27 X 10-10 to +4.2 X 10-10 coul/cm/cal/cm2 . Another way to compare

theory and experiment is to compare the bulk current drivers defined as the algebraic

sum for the bundle. The model predicts a bulk current I --4.2 X 10"9. The difference

between the model predictions and the experimental data can more vividly be seen by

the two histograms plotted in Figure 63 and 64. In the model, there are more negative

drivers in the interior of the bundle due to the close packing of the wires. This is

what gives rise to a smaller bulk current.

Measurements have been made of the capacitance matrix of a 37-wire bundle,

and it is of interest to compare these results with the model predictions. It is

important to note that whatever is the reason for differences between the model and

the data as far as the current drivers are concerned can also be responsible for

difference in the capacitance matrix. We can think of the capacitance matrix as de-

fining the geometry and dielectric properties of the bundle. Table 19 is a comparison

of the experimental data of various elements of the capacitance matrix CM and the

corresponding model prediction. In all cases the data are somewhat smaller than the

model. The difference is consistent with the fact that the wires are not as close

packed as the model assumes.
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Table 19. Comparison of capacitance matrix elements - model and experiment

WIRE TO SHIELD WIRE TO WIRE

CAPACITANCE CAPACITANCE
(PF/M) MODEL EXP. DATA (F/M) MODEL EXP. DATA

C(1,1) 168 90 C(1,2) 112 86
C(2,2) 124 90 C(2,3) 106 85
C(3,3) 124 89 C(3,4) 106 85
C(4,4) 124 90 C(4,5) 106 85
C(5,5) 124 89 C(5,6) 106 85
C(6,6) 124 90 C(6,7) 106 86
C(7,7) 124 90 C(7,8) 78 67
C(8,8) 120 95 C(8,9) 81 65
C(9,9) 119 95 C(9,10) 81 65
C(10,10) 119 96 C(10,11) 81 65
C(11,11) 119 95 C(11,12) 81 65
C(12,12) 119 96 C(12,13) 81 65
C(13,13) 119 96 C(13,14) 106 83
C(14,14) 125 91 C(14,15) 80 64
C(15,15) 124 90 C(15,16) 80 63
C(16,16) 124 90 C(16,17) 80 64

I C(17,17) 124 91 C(17,18) 80 64

C(18,18) 124 91 C(18,19) 80 64
C(19,19) 124 96 C(19,20) 70 60
C(20,20) 124 108 C(20,21) 103 84
C(21,21) 124 110 C(21,22) 79 68
C(22,22) 125 107 C(22,23) 103 86
C(23,23) 124 112 C(23,24) 79 68
C(24,24) 125 110 C(24,25) 103 86
C(25,25) 124 112 C(25,26) 79 69
C(26,26) 125 108 C(26,27) 103 86
C(27,27) 124 109 C(27,28) 79 68
C(28,28) 125 108 C(28,29) 103 86
C(29,29) 124 113 C(29,30) 79 69
C(30,30) 125 111 C(30,31) 103 86
C(31,31) 125 115 C(31,32) 111 87
C(32,32) 196 113 C(32,33) 105 65
C(33,33) 196 109 C(33,34) 105 63
C(34,34) 196 113 C(34,35) 105 65
C(35,35) 196 112 C(35,36) 105 65
C(36,36) 196 111 C(36,37) 105 65
C(37,37) 196 115 C(34,37) 100 63

C(33,36) 100 61
C(32,35) 100 62
C(1,32) 99 60
C(1,33) 99 60
C(1,34) 99 60
C(1,35) 99 60
C(1,36) 99 60
C(1,37) 112 60
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SECTION 5

CIT DESIGN AND DEVELOPMENT

5-1 INTRODUCTION

The ground characteristic of the photon direct drive threat has been shown

in Sections 2 and 3 to be one of a large differential mode, wire-to-shield transmission

line type electrical surge. This type of threat produces a unique energy-time, trans-

mission line controlled waveshape at electronic interYaces and, it is to this threat

profile that satellite electronics are hardened. Hence, the primary requirement

imposed on any candidate C.I.T. technique is that it provides a meaningful SGEMP

hardness verification test with respect to correctly simulating the electrical energy-

time nature of the SGEMP threat. There are, however, a number of additional design

constraints which are imposed at the satellite system program level which impact the

specific method and configuration that can be used to meet the C.I.T. specification.

These constraints are both of a practical nature as well as those associated with

actual spacecraft hardware. Specifically, the C.I.T. must be compatible with the

SGEMP hardening designs employed in actual satellite systems, it must be of a low risk

approach which provides individual, positive control of currents delivered to each pin,

and finally, be practical for user test evaluation.

An additional requirement is associated with the correct electrical parameter

definition of the maximum SGEMP energy threat which exists in a cable bundle, since

it is these parameters which must be used in a meaningful hardness verification test.

Furthermore, the maximum energy capability of a particular wire is not only controlled

by the magnitude of the wire's current source term but is also controlled by the

wire-to-shield characteristic impedance.

The situation is further complicated by the fact that since satellite

cables are comprised of many unshielded wires enclosed by a common bundle shield,

significant interwire coupling occurs which alters the equivalent electrical para-

meters of the transmission line type threat.

From a threat specification standpoint, one could adopt an approach based

on defininq the maximum threat posed to the component box pins in terms of the

total cable core current and some nominal or worst case characteristic impedance.
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This is an extemely conservative approach which is unrealistic but mathematically

representative of an upper limit. This approach, however, is completely intolerable

from a satellite system standpoint since is represents a significant hardware impact

design solution to providing adequate hardening against a realistic threat level.

5-2 DESIGN CONSIDERATIONS

Since the SGEMP threat in present day, design hardened, satellite system is

associated with photon direct drive effects in electrical cables, the foundation for

the overall hardening designs for component boxes is based upon the energy-time,

transmission line nature of the direct drive threat. However, since system weight,

power, cost and reliability are of utmost concern, these hardening designs, by neces-

sity, are of a hardware efficient nature for both new and existing design component

boxes. Thus, SGEMP hardening is implemented on a "specifically where required" basis

rather than legislated on an "across the board" basis.

Since the severity of the SGEMP threat is controlled by energy-time trans-

mission line characteristics and specific wire length, hardening requirements are

imposed based on actual cable lengths in the satellite system for each interface cir-

cuit as well as the quantitatively defineable electrical loads, not only at the circuit

of concern, but at the interfacing circuit at the opposite end of the wire. In many

cases, for example, the presence of a particular low impedance electrical load or the

addition of a single zener diode at one end of a short-to-medium length wire is suf-

ficient to provide protection to the interfacing circuits at both ends of the line.

For longer length lines, SGEMP hardening is implemented at both ends of the line

consistent with the line length of the transmission line type threat. Hence, many

interface circuits in a component box are only SGEMP hardened when all their respec-

tive interface component boxes are electrically connected.

An additional design consideration is associated with the physical nature

of the electrical systems (cables and connectors) in actual satellites. Satellite

cables are unlike re-entry vehicle cables in that they are not generally straight,

two connector cables. Instead, satellite cables are typically complex configurations

comprised of large bundles of upwards of hundreds of unshielded wires contained within

a common bundle shield with numerous branches and connector breakouts, with high

density (large number of pins) connectors used for component box interfaces. Further-

more, the wiring in these cables consists of wires with short total lengths (low
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threat level wires which require minimal SGEMP hardening of their respective inter-

face circuits) in a common bundle with wires of long total lengths (high threat

level wires which require extensive interface circuit hardening).

The consequence of these design aspects is that an SGEMP simulation tech-

nique must provide high simulation fidelity of the energy-time transmission line

nature of the SGEMP threat for multipin, simultaneous drive of component boxes. It

also must be capable of correctly driving a component box whose SGEMP protection is

contained in numerous other component boxes which are not in the test setup during

individual component box testing. Furthermore, the technique must be capable of

simultaneously driving some pins at high levels and others at low levels to accom-

modate various distributions of long and short wire threats at the same connector

interface. This latter requirement also has a significant impact on the risk potential

associated with any potential simulation technique.

Since the SGEMP hardness verification test is typically performed in line

at the latter portion of the total qualification cycle (generally before thermal-

vacuum qualification), a low risk simulation approach is required to avoid inadver-

tent overstress levels which could cause spacecraft equipment failures and impact

system integration and, possibly, flight schedules. In view of the typical SGEMP

hardening designs employed in satellite systems, one cannot generally afford the

luxury of overdriving some pins at higher levels in order to assure that the minimum

required test levels are properly established in all pins. As such, the simulation

method must also be capable of providing individual positive control of each of the

currents delivered to each of the interface pins to eliminate high current (or voltage)

hazards to both the equipment as well as the operating personnel. An obvious addition-

al requirement, which is more practically oriented for user test evaluation, is that

the simulation methods be capable of being configured into portable, in-house hard-

ware readily adaptable to correctly interfacing (both electrically and mechanically)

with actual satellite component boxes and their associated ground test equipments.

5-3 CIT DESIGN

The detailed design requirements were based on the design constraints

described in the previous section. In order to achieve the desired electrical simula-

tion the design and development of the test techniques were accomplished in the

following five subsystems elements.
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1) A central source term generator to reproduce the desired
invariant current driver waveshape to drive a practical
multiport current source.

2) A set of cable delays from the central generator to the
multiport current source to provide time-phased photon
source term simulation.

3) Discrete current source injection into a controlled charac-
teristic impedance (Zo) test cable for each pin under test
to provide simulation of the distributed source term nature
of the threat.

4) Multiple cable line drive capability in order to simulta-
neously drive the number of pins which corresponds to the
maximum number in the cable bundle which could realistically
be at maximum threat conditions.

5) Provide a range of termination impedances and drive levels
for the test injection cable to simulate those corresponding
to the realistic maximum threat when considering realistic
maximum multiwire coupling effects in the actual multiwire
cable which is connected to the component box being tested.

The central direct drive source term generator provides a large amplitude

current pulse which has the same time waveshape as the actual photon pulse. This

is the unit which reproduces the basic invariant current driver waveshape and is the

heart of the C.I.T. technique. The multiport currents source and time phasing cables

provide the correct distribution of the invariant current driver waveshape to the

pins of the component box to complete the simulation.

A significant element in the development of the C.I.T. approach was the

proper technique to distribute the source term generator to a multiwire, controlled

impedance network for correct simulation. This distribution depends on the specific

wire placement in each cable manufactured. Hence, each pin on the component box must

be evaluated for maximum threat in order to ensure that the complete interface is

survivable no matter what manufacturing variations occur in the production satellites.

This evaluation must be performed keeping in mind that the hardened level of each pin

corresponds to the actual wire length in the system and that the indiscriminate in-

jection of current into a high characteristic impedance wire could produce an over-

stress condition.

The approach for distributing the source teni's which was more preferred from

a practical and simulation aspect was to simultaneously test the desired number of

signal lines at maximum threat levels using controlled characteristic impedance
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values and current amplitude values corresponding to maximum threat conditions. Hence,

each pin should be driven by its own controlled impedance pulse generator interface

at maximum wire-to-shield threat levels when considering realistic worst case multi-

wire coupling effects. Multiwire transmission line analyses is required in this

approach for the proper definition of such effects and for the development of user

oriented simplified techniques to readily define realistic test parameters to use

for maximum threat testing of any specific cable design and configuration.

A simplified diagram of the multipin C.I.T. method and equipment which was

developed is shown in Figure 65. This method is essentially a group of "N" transmis-

sion lines driven by "S" current sources. Line-to-line isolation diodes are provided

as shown to prevent interwire bias loading and to prevent loading of the injection

test cable by the multiport current source. A bipolar, central source term generator

is formed by the voltage pulse across the two output resistors. The multiport current
source is formed by the drive resistors in series with the isolation diodes which are

driven by the voltage pulse across the output resistors of the central source term

generator. Photon time phasing simulation is accomplished, quite simply, by driving

each section of the line through different lengths of coaxial cable.

The pulser consists of the current pulse generator, various load impedances

and test cables. The basic schematic for the C.I.T. Pulser is shown in Figure 66.

A test cable impedance of 36 ohms was used as a result of an analysis which indicated

that the average wire-to-shield characteristic impedance on typical DSCS III cables

was 36 ohms. The remaining variables, such as, cable length and termination impe-

dance was specified by the particular component, or connector under test. Simulation

of the distributed current source was achieved by using the pulser to inject the 36

ohm test cable once per meter. A typical test setup shown in Figure 67 used test

cable lengths of 1/2 meter between the I/F adaptor of the box under test and the

pulser, 1 meter between current injection points and 1/2 meter between the last cur-

rent injection point and the termination load. A Tektronix CT-2 current probe was

used to measure the current delivered into the box under test. When opening all

outputs of the pulse generator are either connected to a test cable or connected to

a short.

Typical design capability of this C.I.T. equipment is shown below when

using a 10 amp per meter drive level.

1 3



13I POLAR
CENTRAL

SOURCE TERM
GENERATOR

MULTIPORT
CURRENT SOURCE

COMPONENT O COMPONENT
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Figure 65. Simplified schematic diagram of the multipin C.I.T.
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Pulse Generator Charge: 20 kV

Pulse Shaping Resistor: 10 Q

1 Driver Max: 10 Amp/Meter

Cable Impedance: 50 Q

Cable Length: Absolute Maximum Number of
Wires Which can be Driven

0.17 120

0.5 60

1.7 40

Figure 68 shows the overall layout of the C.I.T. equipment which was

designed. Figure 69 shows an overall view of the attached pulser hardware that was

subsequently developed based upon this design. This hardware was then used to test

actual spacecraft boxes to demonstrate the application and utility of the test tech-

niques and pulser hardware. The results of these tests are given in the Final

Technical Report, Task 2 of this Program (Reference 13).

Typical pulse current waveshapes resulting from the simulated SGEMP re-

sponse of numerous cable lengths and which are delivered to a large range of compo-

nent box pin impedances by the C.I.T. method are described here are shown in Figure 70.

The component box pin impedances "R" are expressed in terms of the impedance relative

to the wire-to-shield characteristic impedance (Zc) of the cable response being simu-

lated. The cable electrical length threat T being simulated is expressed in terms

of the cable propagation time compared to the full width-half maximum (FWHM) of the

photon pulse being simulated. The time-per-division "tD" and the amperes-per-division

"ID" of the oscilloscope traces are expressed in time relative to one another. Each

of the amplitudes and waveshapes shown are in excellent agreement with those which

are predicted by analytical codes.
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SECTION 6

CONCLUSION

The need for this analysis, design and development effort is rooted in the

requirement for a safe and reliable simulation test method to verify satellite elec-

trical system operation in a nuclear X-ray environment. A number of fundamental

transmission line response equations have been developed, progressing from the simple

two-wire case to the multiwire cable, which provide useful tools for analyzing cable

response in radiation, including the case whe-c che radiation propagates along the

length of the cable. Numerical and graphic results are provided.
I

For the.mult-iwire bundle the current driver description has been reduced

to an effective single wire transmission line with an effective current driver.

Using this effective current driver the worst case current and energy into an inter-

face is developed as a function of line length and termination impedance.

The current injection test method which has been designed and described

here represents what is felt to be an optimum approach for performing a meaningful

multipin C.I.T. on electronic component boxes. The photon direct drive simulation

has been accomplished within the overall satellite program level constraints of

actual electronic equipment.

The major objectives of developing simplified analytical and experimental

techniques for simulation of the photon direct drive threat to satellite electronics

has been met in three areas.

1. The photon/electrical response of multiwire cables has been determined

with respect to their SGEMP direct drive sources, transmission line parameters and

realistic multiwire coupling.

2. The electrical test requirements for component box current injection

t..ting have been defined with respect to the SGEMP electrical energy distribution

in multiwire cables and injection current level and characteristic impedance of

this threat.
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3. Direct drive current injection test simulation has been performed

using the designed C.I.T. pulser on electrically active component boxes to achieve

a proper simulation of threat, at low risk, while being compatible with actual hard-

ened satellite electronics and practical for user test performances.

1
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Appendix I

PROPERTIES OF THE TRANSMISSION-LINE MATRICES

There are two matrices which uniquely determine

the electrical properties of a multiwire bundle. These

matrices are the capacitance matrix C and the inductance

matrix L. The elements of the capacitance matrix C,

also called Maxwell's capacitance coefficients, are

defined by the following matrix equation

Q i =2:ciy j(-)

j
where Qi is the charge on the i'th conductor, Vj is the

voltage of the j'th conductor with respect to the shield

and Cij are Maxwell's capacitance coefficients. Cij is

the ratio of the charge induced on the i'th conductor to

the potential on the j'th conductor when all other con-

ductors are at zero potential. The capacitance matrix

has the following properties:

a) C is symmetric

b) The diagonal elements are all greater than or
equal to zero.

c) The off-diagonal elements are all less than or
equal to zero.
N

d) L Cij > 0 for every i.
j=l
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These properties can all be proven from the defining

relationship, Equation (I-1), and from the basic prin-

ciples of electrostatics.

The inductance matrix L is defined in a way

analogous to the capacitance matrix

L. ij (1-2)ij Iji AX

In this equation Lij is the inductance coefficient, Oij

is the magnetic flux linking the i'th conductor and the

shield when there is a current Ij flowing through the

j'th conductor and no current flowing through any other

conductor, and AX is a short section of length. This

equation merely states that the inductance coefficient

Lij is equal to the flux linking the i'th conductor

per unit length of cable per unit current flowing in

the j'th conductor. The inductance matrix has the

following properties:

a) L is symmetric.

b) All elements are greater than or equal to
zero.

The propagation matrix y2 is defined by the

following equation

y C -L (1-3)

This matrix is, in general, not diagonal; but when

brought to the diagonal form by the appropriate
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transformation matrix, the diagonal elements are related

to the multiwire phase velocities. If we denote the

diagonal form of the propagation matrix as y2 and the

multiwire phase velocities as V, then we have

= ((2) J1/2 (1-4)

Although, in general, the multiwire phase velocities can

all be different, there are important circumstances in

which they are all the same. In particular, if there is

a uniform dielectric surrounding all the wires in the

multiwire bundle, there is only one phase velocity asso-

ciated with this bundle and it will be found that the

propagation matrix y2 is diagonal with only one diagonal

element y2 . The phase velocity V for this bundle is,

therefore,

V = 1 (1-5)
Y

and we have

LC = CL = T (1-6)

where I is the identity matrix.

Since the inductance matrix does not depend on

the dielectric properties of the multiwire cable, but

only on the relative positions of conductors, L is the

same for a given multiwire cable with or without any

dielectric. If we know the capacitance matrix C* of
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our multiwire cable without dielectric, we can use the

fact that there is only one phase velocity for this

cable V=C, the speed of light, and the relationship

L C' = C* L -- I

r (CO)'l (1-7)
C
2

to determine the inductance matrix of our multiwire

cable.

The characteristic impedance matrix Zo of a

multiwire cable is determined once L and C are known

by the foilowing relation

= (C
-1  )1/2

- (=C -1 1/2 (I-8)

In general, if y2 is not a diagonal matrix, but can be

brought to the diagonal form - by the transformation

matrix T, we have

2 - 1 2
YD T y T)

and, therefore,

o C  T YD T 1  (I-l0)
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p1

For the special case when there is only one phase

velocity V, we have

C-1Co=-V- (I-li)

RELATION TO MEASURABLE QUANTITIES

From the results of the preceding section, it

is clear that a complete description of the electrical

properties of a multiwire bundle is obtained once the

capacitance matrix C and ( is computed. As part of

the computer code CHIC, these matrices are calculated

and all other relevant parameters are computed. It is

important to note that a knowledge of C and Cc entails

complete information about the electrical properties

of a multiwire bundle, and, therefore, any particular

measurement made of capacitances and inductances can

be compared with the theoretical results by appropriate

manipulation.

It is usually more convenient, when making

a capacitance measurement, to relate charge to the

potential difference between two conductors. If one

performs such an exercise on a multiwire bundle one

obtains a capacitance matrix CM which is different

from the one considered in the previous sections. In

the following paragraph we will indicate how one obtains

CM by appropriate manipulation of C.
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9

The defining relation for C is again

=C V (1-12)

We can invert this relation and solve for V

V = C -1 i (1-13)

If we specify the potential on wire i as V, let the

charge of wire i be Q and at the same time let all of

the other wires float so that Qj=O for i~j, we have

V (C-1)iiQ  (1-14)

We can write this relation in the following way

Q= 1(-l~i
(C 1)i

- (CM)ii V (1-15)

This relation defines the diagonal elements of CM

1M

(CM) 1 (1-16)

The off-diagonal elements of CM are determined by the

following prescription

Qj -Qi = Q

Qk= 0, k t i,j (1-17)
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With this assumption, we can expand Equation (1-14) for

i and j

Vj = (C- 1 )jj Q - (C- 1 )ji Q

Vi= (c -1)ij Q - (C-1I)ii Q (1-18)

So that

Vj-V i = ((c-l)jj+(C-l)ii-(C-l )ji-(C-l)ij) Q (1-19)

Re-writing, we have

Q = (CM)ij AV

(CM).. - 1 1(C-l)ii + (C I) - 2(C- )ij

AV = V. - V. (1-20)

The manipulations outlined above result in a

capacitance matrix CM, the elements of which can be

conveniently measured. In this definition of CM, (CM)ii

is the ratio of the charge on the i'th conductor to the

potential on the i'th conductor when all other conduc-

tors have no charge. (CM)ij (itj) is the ratio of the

charge on the i'th conductor to the potential difference

Vj-V i when all other conductors k(k~i,j) have no charge.
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Appendix II

SOLUTION OF TRANSMISSION-LINE EQUATIONS

In this appendix we will discuss the solution

to the T-L equations as presented in the main body of

the text. In order to arrive at the exact solution we

have made the following assumptions:

1) There is only one propagation velocity, V.

2) TD is uniform along the multiwire bundle
(normal X-ray incidence.).

3) Resistive terminations.

The equations to be solved are:

- t D

together with the boundary conditions

T(Xt=o) = V(X,t=o) = U

V(X=O,t) = -ZL I(X=O,t)

V(x=9.,t) zR I(X=Zt) (11-2)
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where ZL(ZR) is the termination impedance matrix on the

left (right) end of the cable of length

The method of solution is to take the fourier

transform of the two equations using the following con-

vention

00

C iwt

V(X,w) = f dt V(X,t)e0

IO

I(w) = dt Ite i w t  (11-3)
D f= ~

The fourier transformed version of these two equations

are

-- = iwL I

1 - iwC V + 1 (11-4)
axD

We can take the second derivative of each of these

equations with respect to X, noting by assumption 1

that C L=LC=V! - T and by assumption 2 that aID =0

and arrive at the following two equations
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2  k2  = 0

-- 2 iw (11-5)
ax2
a2  + k2V =iwL Y D
-2

where

k _ w2 (1-6)
V2

The solution of these two 
equations is straightforward

ikX -ikX + 1 D
V= e +e V k

ikX+ -ikX (1-7)
I=e +e

where

z= = V_

'V4- 70 f
=zo

v z 0 -
_ 0-

+(_ e2ik ) i x [ Z0+L'-PL(Z0+ZJ =)-~ ek

Lk5

15~9



- ik - 1

- (Z +Z~l

e iki iz 0D1k

PR = (Zo + Z R )  (Zo FR )

pL = (Z0 + ZL) (Z0 - ZL) (11-8)

The solution for I at X=O is simply

I(X=O,w) I + I-

o+ - 2ik9] -' 2ikZ

+ (Z o+0L+L)l e 7 (PO-9)

We can take the inverse fourier transform of this equa-

tion, according to the following definition

+ -" iwt
-Xt)= dw I (X,w)e t

1- +0 -iwt

V(X,t) = dw V(X,w)e
-a,

D(t) =dw D(w)e -iWt I - O
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The analysis of the fourier-transform of Equation (11-9)

is made intelligible by the following observations. Let

Q(t) be the total charge deposited at time t due to the

Norton equivalent driver ID

Q (t) f YD(t~dt" I-1

0

Using Equation (II-10) we can write

= 1f t  +00

Q(t) dt dw I D(w)e - i w t

0 0

-iwt

1 +r iID(w)e
. dw w (11-12)

So that we have

2f dw e-t k- V Z0 Q(t) (11-13)

In addition we have

lRL2ikZ) -i n_ i2nki

= (PRPL)ne (11-14)
n=0

161



So that

2ik- ik

S(Z+Z) 
e

IR(ZOL 0J ORJ

_ (I [i~~oDl (II-15)

If we take the fourier-transform 
of this equation,

using Equation (II-10), we have

T(Ot) - (i + Lx

( nR L) k6Q(t2nT) - % 6Q(t-(2n+)TI (11-16)
n=O

where

aQ ~ ) = Q~ t -Q (t-Tt)

Z /V-17)

as the final solution for the current 
that flows at X=O as

a function of time.
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Appendix III 

ENERGY THEOREM 

An important consequence of the properties of 

the T-L equations as presented in the main body of the 

text and in the preceding Appendix is the presence of 

an energy theorem. The total energy density for a 

multiwire bundle is defined by the following equation 

(III -1 ) 

where the inner product of two vectors A and B is denoted 

by the symbol (A,B). If we take the partial derivative 

of ~ with respect to t and X and use the T-L equations , 

Equation (II-1) to simplify, we can write a Poynting 

equation for JJ 

.£.1!+.£.§. at ax 

whP.re S is the energy flux (Poynting Vector) and is 

defined 

(I I I- 2) 

S = (f, V) (I I I- 3) 

and the source term is (ln,V) . The energy which is 

transported to the loads is generated by the source 

term, which is directly related to the Norton Equivalent 

driver Tn . 
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If we integrate Equation (11-2) over the

length of the cable Z, we obtain an expression for

the total energy in the multiwire cable E

d+ {(T(c). V(O)) - (o), V(O))}

f (I-D , V') dx (111-4)

0

If we again assume, as we did in Appendix II, that TD is

independent of X, then the right-hand side of the

previous equation can be written

f dx (ID, V) = (ID' (V) (111-5)

0

where <V> is the average voltage

<V> f V dx

0

The quantity,- therefore, in Equation (111-5) represents

the total power source and the total available energy is

ao

= (D' <V>) dt (111-6)

We can, again, use the T-L equations to get an expression

for <V>.
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<V >  =- TD (f" T() (117

This equation, together with the relationship between

current driver and charge

fD dt

allows us to rewrite the total available energy as

6=fodt {(~C-1() -(,C-
1 1c0O))1

0

- 1- (111-9)

where QD is the total charge transfer in the multiwire

cable

QD = ID dt (III-10)

0

To arrive at the expression in Equation (111-9) for ',

we have assumed that at t= - , V(o)=.

Since the expression for 6 in Equation (111-9)

represents the total energy that can be dissipated across

all terminations in a multiwire bundle, it is of interest

to cast this equation into a more useable form. It is

immediately obvious that the energy is not a constant of
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the motion, since it depends on the solution f(t), T(O),
which is associated with the fact that the Poynting

equation, Equation(III-3) has a current source term.

We can, however, arrive at a usable expression for

since we have an analytic solution for the current f

that flows across the terminations, as presented in

Appendix II. For convenience in this derivation, we

will assume that the terminations are symmetric, i.e.

PL = PR = P (III-11)

The solution for the current at X=O is, therefore

IV T(o,t) =-. v =

2. (I + P)

E(P) 2 n !6(t2n-r) F P 6Q(t-(2n+l)T)i (111-12)
n=O

For the case of symmetric terminations, we have

T(w) : - 1(0) (111-13)

So that

= - 2f dt ( C, c T 1 o))

0

~- -l +  >< -
1 (111-14)

I (QD' C Q
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In addition, we will assume that the waveform f(t) for
the current driver '-D is a square wave of width p, so

that

ID(t) = 1O f(t)

T(t) = ot 0 <t < Tp

= T0 Tp  t Tp

and p

QD o Tp (111-15)

where I0 is the peak driver in a/m. The other time of

interest is the propagation time, T where

£ = Z/V (111-16)

In order to obtain an expression for e from Equation (111-14)

we must assume a particular value for the ratio

: p/Tie (111-17)

Since we are interested in obtaining an expression for CO

the maximum energy that can be dissipated, it is natural

to look at the particular values of ; that correspond to

long cables, i.e.

0 < < 1 (111-18)

If we assume the range of ; as given above, and substi-

tute the expression for T(O) into Equation (111-14),
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using Equation (III-15) we can perform the integrations

over time and sum the infinite series. The result is a

closed form expression for the total energy that can be

dissipated across all terminations

eleMAX =  1 + < > (III-19)

where

'MAX C QD ) "

! Q~(D' c- r QD)

< n> F (111-20)
'- D C - I Q

This result is valid in the range

0 < ; < 1 (111-21)

In general, the solution for e is different in other

ranges of , getting more complicated as gets larger.

The result for the range

1 < < 2 (111-22)

can be written

6 /A = 1- [f (1+2 <F> + <y2)
MAX

-
+ < 2>)] 1 < < 2 (111-23)
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where

-1 1 - (111-24)
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Appendix IV

MULTIWIRE TERMINATION IMPEDANCE

MATRIX AND REFLECTION COEFFICIENT

The solutions to the T-L equations presented

previously, both for the current and energy into the

loads, depend on the terminations through the impedance

matrix Z or, alternatively, on the reflection coeffi-

cient which is a function of Z. In this appendix

*we will consider the relationship between Z and physical

resistance and, also, what the reflection coefficient 1

looks like for the various possible terminations.

IV.1 IMPEDANCE MATRIX

The boundary conditions for an n+1 bundle of

wires terminated at the left (right) end with a termina-

tion impedance matrix ZL (7R) is:

V(O,t) = - ZL I(O,t)

V( ') R l(9£,t) (IV- 1)

If we consider the left side of the transmission line,

we can write:

Y(Ot) = (ZL - ) V(O,t) (IV-2)
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If we denote the current (voltage) at X=O in wire i by

Ii, (V,) we have

N
i. =L (Z -) V. (IV-3)

j=1 L ij

This current will divide depending upon the physical

resistances that it sees. If we denote these physical

resistances by Rij j=1, n, where Rii is the resistance

from i to ground and Rij, j=1, n (i j) are the resis-

tances from i to all the other wires in the bundle,

then we have

N V. - V. V.
+ R (IV-4)= R.. R

j=1 l ii
i~j

Equating these two expressions for Ii, we have

N V i - V. V. N (-1

R. + R~ (z (L )ij V (IV-5)
j=l xj ii j=1

Rearranging these terms we have

j=+ Rij Rii L \T

N + (Z -) V. =0 (IV-6)
j=l Rij L
i~j
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I

These equations imply

(- 1 ) =N 1 1
ZL ).* E R R

j=1 ij 1i
i~j

(Z) - 1 = -(IV-7)
L ii Rt (IV-7

We can rewrite the first equation using the second

equation and we obtain

N 1
(ZLl)ii E - (ZL')ij + R. (IV-8)

j~l =1

itj

which implies

N

R (ZL 1)ii  + E (ZL ijRii j=l L ) i

i~j

N (ZL )ij  (IV-9)

j=1

And so we obtain the following two equations

1

Rij = 1it
(ZL1)ij

R ii N 1(IV- 10)
E (ZL)ij

j=l

t
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If we desire to characteristically terminate the multi-

wire cable, we can use the above two equations to

determine the appropriate physical resistances. If we

desire to determine what termination matrix ZL to use

corresponding to a given set of physical resistances

Rij, we can use Equation (IV-7). These can be written

as:

N 1(ZL1)ii jE

-1 1 j I-1(ZL )i R i(

IV.2 EXAMPLES - TWO WIRE

In this section we will consider some particu-

lar examples of the results indicated in the previous

paragraph. Let us consider a TSP with the following

capacitance C, inductance L and characteristic impedance

matrix Z

207. - 36. )C = pf/m

- 36. 207.

22.1= nH/m(2. 223.

0= ( (IV-12
zo 3.73 33. Q I12
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CASE 1: CHARACTERISTIC TERMINATION

If we desire to terminate the TSP character-

istically, we can use Equation (IV-10) to determine the

appropriate physical resistances. The inverse of the

characteristic impedance matrix ZL is given by:

= 3.04 x I0- 2 3.41 x 0-3 3 1

- 3.41 x 10 - 3  3.04 x 10- 2  (IV-13)

and the physical resistance matrix R is:

/32.9 293.6
R = A

293.6 32.9 (IV-14)

The reflection coefficient p when the cable is charac-

teristically terminated is given by:

(0 01
0 ) (IV-15)

CASE 2: WIRE-TO-SHIELD TERMINATION

If we desire to terminate the TSP only wire-to-

shield with R 1 2 =R 2 1 =-, corresponding to no wire-to-wire

termination, we can set R12=R 2 1=- in Equation (IV-l1) to

determine the appropriate ZL matrix:
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-1

(ZL I  = Rll

(ZL
1  ) 2 1

L 22 R22

(Z L )12 - (ZL)21 -0 (IV-16)

which implies:

L = RII 
0

L 0 R22 ( IV-17)

For this case, therefore, the diagonal elements of ZL
are identical to the physical resistances Rll, R2,.

If we write the characteristic impedance

matrix in the following way

ZO=(I Z

0 z2  (IV-18)

then p can be written:

- 1 ( Z 1- R 1 ) ( Z 2 + R 2 )- Z 2  2ZR 2

1
p 2ZR1 (ZI +R1) (Z2- R2)-Z 2

D = (ZI+R1 )(Z 2 +R2 )-Z 2  (IV-19)
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It is important to note from the above expression for

p that whenever the two wires are terminated wire-to-

shield only, p can never be diagonal for any finite

value of R1 and R2 .

CASE 3: SHORT-CIRCUIT WIRE-TO-WIRE

If we desire to determine the appropriate Z

when the two mires of the TSP are tied together and

terminated with one resistance to ground we can set:

R12 = R21 - 0

R = R = R (IV- 2 0 )

This corresponds to:

' R 1 1
L 2 C 1 (IV- 21)

The reflection coefficient is:

1 (ZI-R)(Z 2 +R)-Z2 2ZR
p= -5(Z (ZI1+R)(Z 2_R)_Z2)

D = (Z1+R)(Z 2+R)-Z
2  (IV-22)
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CASE 4: GENERAL EXPRESSION - TSP

For the general situation of any combination of

physical resistances we can write down the appropriate

termination matrix ZL"

= I 12)

R
R 21 R 22

1 /(R22+R2 1)R 1 R 1 2  R12R1 1R2 2 )L R2R21 +R 11 R21 +R22R 12\R2 1 R 1 1 R2 2  (R 1 2 +RlI)(R 21 R 2 2 ) (IV-23)
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Appendix V

TWO WIRE SOLUTIONS

V.1 CURRENT

The termination dependence of both the current

and energy in a multiwire bundle can be conveniently

represented by the dimensionless matrix P defined as

S= + -Z) (V-l)

The exact solution for the current given in Equation

(11-16) indicates that the fact that f is, in general, a

non-diagonal matrix distinguishes a multiwire bundle from

a single wire transmission line. Since the characteristic

impedance matrix Z0 can never be diagonal for any physi-

cally reasonable multiwire bundle, p can never be diagonal

for any finite value of the terminations. It is possible,

however, to make a transformation which diagonalizes p, and

which allows the solution for a multiwire bundle to be

written in terms of single wire solutions. While this

procedure, in principle, can be done for any number of

wires, in practice, the algebra becomes rather tedious

for n>2. In the following paragraph we will sketch this

procedure for a two-wire bundle.

The characteristic impedance matrix is defined

Z Z2 (V-2)
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I,

and the termination impedance matrix is defined

= 0 R 2 (V-3)

where we will only consider terminations wire-to-shield,

and R and R are the physical resistances wire-to-

shield. The reflection coefficient can be written

(Z -R)(Z2 +R )-Z2  2ZR2

2ZR 1  (Z 1 +R1) ( 2- R2)-Z2, (V-4)

where

A =(Z +R1) (Z2 +R2 )_Z
2

The e-values of 7 can be found directly

I (l-rIr2 -C
2 )+ ((rl-r2 )

2+4C2 rr 2 )1/2

(1+rl)(i+r2 )-C2 (V-5)

where

r I = R I/Z 1

r 2  = R2 /Z2

C = Z/(Z 1Z2 )
1 /2  (V-6)

IsO
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The e-vectors corresponding to these e-values can also

be obtained directly

)a (V-7 )

where

a = R 1Z2 - R2 Z1

( 2 + 4Z
2 R R 2)1/2

= R1/R 2  (V- 8)

The quantity C is a measure of the wire-to-
wire coupling. It is easily seen that the solution

reduces to two independent uncoupled transmission

lines when C is zero. From general properties of the

impedance matrix, it may be shown that the maximum

value of C is unity.

Once the e-values and e-vectors have been

determined, it is straightforward to construct the

transformation matrix T. If we denote 61 and e2 as

the unit vectors in the original basis, which can be

written as

e2 (0)

*e 2 = (V- 9)
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We can write

G= GD(Vb
\21) e (V-lO0)

where

T 1/2 1 ~~a~ 1/2

,((l+ ,)!-( 17-) 1 (+ C;) - C) )/

In order to write the solution for the current in wire

one and two it is necessary to obtain (T)-1 which we

can write:

e 2  n \ 2 ) (V- iij

where

/ D 1/2 D )1/2
=~ -1

13~2



and

D (1+)2B - (l-c)2L

= T l l  T 12t

Ti 2

T T2 1  T22 1  (V-12)

In order to understand wire-to-wire coupling
in a multiwire transmission line, it is of interest to

drive one wire and look at the current that flows in

the other wire. The analysis that we have just developed

allows us to accomplish this. Let X denote the basic

current driver

- Xie i  (V-13)

From the previous section we have

(T -1@i =(T-lij n.

So that

= Xi (T-1 )i nj (V-14 )

The current that flows in both lines can then be written

14 = Xi(T-1 )ij I(X.) Aj (V-15)
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where I(\j) is the single wire solution for the e-value

Aj. For the special case that we drive only wire two,

we have

x = 0

x = (V-16)

and the solution for the current in wire one and two can

be written:

/ 2 21/2
I1 4; 2 I(1) - I(X 2 )

2 2) + +-) I(X 2 ) (V-17)

where I(A2 ) are the single wire solutions with reflec-

tion coefficient X2 .

V.2 ENERGY

Once the current in both lines is written in

terms of single wire solutions, it is of interest to

compute the energy dissipated across the terminations.

Our main interest in this analysis is the calculation

of the energy dissipated across termination one when

wire two is driven, since all of this energy represents

coupled energy. The current that flows in wire one can

be written
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ZR2

RR I [Rz 2-R 2 z1 )2 +4Z2 RjR 2 ]"1
2  2) (-8

and the energy is

0

where

A =ZR 2 2  (V-19)

[(RIz 2 -R 2 z1 ) 2 +4Z 2 R1R 2

If we assume a square wave driver, we can perform these

integrations as has been done in previous sections. In

particular, if we take the long line limit which corres-

ponds to

= T «/ <<<1 (V-20)

We arrive at the following expression for E l

MAX([I rIr 2 2 l1X +X 2

E E2 1(r,-r 2) 2+4C 2 rr 2  [ 1-A 1  1- 2

- 2 (1)l 2) (V-21)
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Where E2 MAX is the maximum energy capability of wire 2

and is given by

E2MAX = (VZ2 )QD
2  (V-22)

From these expressions, one can show that the coupled

current and energy tend to zero as the termination

resistance on line 2 goes to zero (shorted) and

increases as the termination resistance is increased.

If line 2 is opened, the current on line 1 simply

appears as if line 1 were being directly driven with

an effective source term of C times the line 2 source

term. In particular, all the energy capability of

line 2 is not coupled into line 1. The final voltage

on the second line is not zero, and leads to capaci-

tive energy storage of a portion of the energy capa-

bility of this line.
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Appendix VI

TWO-WIRE CALCULATIONS

We have considered a number of two-wire cables.

Each cable is labeled by the designation TWI where

I=1,2,3. The following parameters distinguish each

cable from one another.

TWI

_ 207. - 36.0)

(207. pf/m
36.0 207. /

= 223. 11.)

L = nH/m
ii. 223,

Zc 3.73 33 ohms

TW2

/207. - 36.

C = pf/m
\- 36. 207.

= Q55.4 9.6)

L = nh/m
9.6 554

= ohmsc 2.9 16.6

i 7

S ..1. .

INi18. .... .--



TW3

S226. -109.(2:= pf/mC =-(09. 751. f/

= 8. n/

8. 16./

= ( 159 23 .:) ohms
I 23.5 4.8

In the following pages we will present the results of the

calculations. The cable designated TWl is the two-wire

cable which has two phase velocities whereas cables 1 and

3 each have one phase velocity. Each plot presented is

labeled by a header which indicates the parameters used.

In the following Tables we indicate the definition of

these headers. For cables TWI and TW2 the current

drivers were as follows

and for TW3 the current drivers were

D (10



TABLE VI.1

TW1

Z = ohms
0 33 .3)

S= termination impedance matrix (ohms) (symmetric
termination)

= pulse width (square wave) (ns)

L = length of cable (meter)

R T L Header

.lZ 3 .3 TWIRlITILl

.1Z 3 3. TWIRllTIL2

.lZ 3 30. TW1R11T1L3

.1Z 30 .3 TW1R1IT2L1

.1Z 30 3. TW1R1IT2L2

.1Z 30 30. TW1R11T2L3

.1Z 300 .3 TW1R1IT3L1

.1Z 300 3. TWIRIIT3LI

.lZ 300 30. TW1R1T3L3

Z 3 .3 TWIR22TIL1

Z 3 3. TW1R22T1L2

Z 3 30. TWIR22TL3

Z 30 .3 TW1R22T2L1

Z 30 3. TW1R22T2L2

Z 30 30. TWIR22T2L3
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TABLE '11.1 (Continued)

p L Header

Z 300 .3 TW1R22T3Li

Z 300 3. TW1R22T3L2

Z 300 30. TW1R22T3L3

10 Z 3 .3 TWlR33T1L1

10 Z 3 3. TW1R33T1L2

10 Z 3 30. TW1R33TIL3

10 Z 30 .3 TW1R33T2L1

10 Z 30 3. TW1R33T2L2

£10 Z 30 30. TW1R33T2L3

10 Z 300 .3 TW1R33T3L1

10 Z 300 3. TWlR33T3L2

10 Z 300 30. TWlR33T3L3
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TABLE VI.2

TW2

(16.6 0 (660

= 0 16 .6) 0 (j0

0o 0)

0 ~ 16 .6)

R =termination impedance matrix (ohms) (symmetric
termination)

Tp = pulse width (square wave) (as)

L = length of cable (meter)

TL Header

.iz 3 .3 TW2Rl1TlL1

.iz 3 3. TW2R11T1L2

.1Z 3 30. TW2Rl1T1L3

.1z 30 .3 TW2Rl1T2L1

.1z 30 3. TW2R11T2L2

.1Z 30 30. TW2R11T2L3

.1Z 300 .3 TW2RllT3L1

.lZ 300 3. TW2RllT3L2

.1Z 300 30. TW2RllT3L3

z 3 .3 TW2R22T1L1

z 3 3. TW2R22T1L2

z 3 30. TW2R22T1L3

Z 30 . 3 TW2R22T2L1

z 30 3. TW2R22T2L2

Z 30 30. TW2R22T2L3
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TABLE VI.2 (Continued)

RH L Header

Z 300 .3 TW2R22T3L1

Z 300 3. TW2R22T3L2

Z 300 30. TW2R22T3L3

10 Z 3 .3 TW2R33T1L1

10 Z 3 3. TW2R33T1L2

10 Z 3 30. TW2R33T1L3

10 Z 30 .3 TW2R33T2L1

10 Z 30 3. TW2R33T2L2

10 Z 30 30. TW2R33T2L3

10 Z 300 .3 TW2R33T3L1

10 Z 300 3. TW2R33T3L2

10 Z 300 30. TW2R33T3L3

.1 Z + Z 2  
3 3 T 172 R 2 T L 2

.1Z +10Z7 3 3 TW2R13T1L2

Z 1 +.1Z 2  3 3 T172R21T1L2

Z 1+10Z 2  3 3 TW2R23TlL2

o 1 +.z2 33 TW2R31T1L2

o 10 Z 2  3 3 TW2R32T1L2
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TABLE VI.3

T173

=. (1: 1) =(7)2

R =termination impedance matrix (ohms) (symmetric
termination)

=P pulse width (square wave) (ns)

L = length of cable (meters)

T L Header
p

1Z 3 3 TW3R11T1L2

Z 3 3 TW3R22T1L2

10 Z 3 3 TW13R33T1L2

.1 Z23 3 TWV3R12T1L2

Iz 1 +10Z2 3 3 TW3RI3T1L2

Z 1 +.1 Z2  3 3 TW3R21T1L2

Z 1+10Z 2  3 3 T1V3R23TIL2

10Z 1 +.1 1 2  3 3 TW3R31T1L2

0Z 1 +Z 2  3 3 TW3R32T1L2
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Appendix VII

SEVEN-WIRE CALCULATIONS

We have considered various distributions of

drivers for the seven wire bundle discussed in Section V.

These distributions represent typical groups of seven

wires in the thirty-seven wire bundle also discussed in

Section V. The propagation time and pulse width were

chosen such thatI
Tp = T, = 17ns

which corresponds to a length of cable equal to 3m.

Three different distributions of drivers were considered
SEl, SE2, SE3 according to the following

.5
+1.0

SE1 - ID(1) = .3

-.3.2
.3

+ .5

+ .3
+10

SE2- ID(2) ( .05
.02
03
20
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+1.0
-.7
-.2

SE3 1I (3) = -.

- D4

Each plot is labeled by a header. The definition of the

header for each plot is given in Table (VII.1)-(VII.3).
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TABLE VII.1

SE 1

Z 30.1

27.4

27.4

27.4

27.4

U 27.4

27.4

=0

27.40

0

0

0

0
00

=2 30.1

00

27.4

27.4

27.4

27.4

27.4

197



TABLE VIII.1 (Continued)

R = termination impedance matrix (ohms) (symmetric
termination)

Tp= pulse width (square wave) (ns)

L - length of cable (meter)

R L Header

.1Z 17 3 SEiRliTiLl

Z 17 3 SE1R22T1L1

10 Z 17 3 SE1R3T1L

.1+Z 2  17 3 SE1R12TlL1

.1Z 1+10Z 2  17 3 SE1R13T1L1

Z 1+.1Z 2  17 3 SElR21T1L1

z1 +1Z2 17 3 SElR23T1L1

0Z 1 +.1Z 2  17 3 SE1RMT1L

10z 1 +Z2  17 3 SE1R32T1L1
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TABLE VII.2

SE2

= 30.1
027.4

27.4

27.4

27.4

27.427.4

0
0 0

27.4

0

0

0
00

2= 30.1

27.4

0

27.4

27.4

27.4

27.4
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TABLE VII.2 (Continued)

R = termination impedance matrix (ohms) (symmetric
termination)

Tp= pulse width (square wave) (ns)

L = length of cable (meter)

R TpL Header

.1 17 3 SE2R11Tl1

Z 17 3 SE2R22T1L1

10 Z 17 3 SE2R33T1L1

.1Zi +Z 2  17 3 SE2R12T1Ll

.1Z1+10Z 2  17 3 SE2Rl3T1L1

Z1+.1Z 2  17 3 SE2R2lT1L1

Z1+10Z 2  17 3 SE2R23T1L1

10Z1+.1Z 2  17 3 SE2R3lT1L1

10Z1 +Z 2  17 3 SE2R32TIL1
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TABLE VII.3

SE 3

Z 30.1

27.40

27.4

27.4

27.4

27.4

27.4

z = 30.1

0

0

0

0
00

0

z 2 A

27.40

27.4

27.4

27.4

27.4

27.4
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TABLE VII.3 (Continued)

R = termination impedance matrix (ohms) (symmetric
termination)

p pulse width (square wave) (ns)

L = length of cable (meter)

Rp L Header

.1Z 17 3 SE3RIlTIL1

Z 17 3 SE3R22TIL1£
10 Z 17 3 SE3R33T1Ll

.1Z1 +Z2  17 3 SE3RI2T1L1

.IZI+10Z2  17 3 SE3R13T1LI

Z1+.IZ2 17 3 SE3R21T1LI

Z1 +10Z 2  17 3 SE3R22TIL1

10Z +.IZ2 17 3 SE3R31TlLI

10Z1 +Z2  17 3 SE3R32TIL1
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Appendix VIII

LOSSY CABLE CALCULATIONS

The effects of loss have been considered for

the following cable:*

RG - 316

C 95 pf/m

L 237.5 nH/m

£ =2.05

In the following pages we will list the results of the

calculations. Each plot is labeled by a header to

identify it. In Table (VIII.1) is indicated the defi-

nition of the header. In the first two plots are

indicated R(W) and G(W) as is used in all the calcula-

tions and the remainder of the plots indicate the

results of the calculations.i
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TABLE VIII.1

R = termination impedance (ohms) (symmetric
termination)

Tp= pulse width (square wave) (ns)

L =length of cable (meters)

R TL Header
p

.5 3 .3 ONiRiT1L1l

.5 3 3. ON1R1T1L21

.5 3 30. ONlRITIL31

.5 30 .3 ON1R1T2L11

.5 30 3. ON1R1T2L21

.5 30 30. ON1R1T2L31

.5 300 .3 ON1R1T3L11

.5 300 3. ON1RIT3L21

.5 300 30. ONlR1T3L31

50 3 .3 ON1R2T1L11

50 3 3. ON1R2T1L21

50 3 30. ON1R2T1L31

50 30 .3 ON1R2T2L11

50 30 3. ON1R2TL21

50 30 30. ON1R2T2L31

50 300 .3 ON1R2T3L11

50 300 3. 0N1R2T3L21

50 300 30. ON1R2T3L3l

5000 3 .3 ON1R3T1L11

5000 3 3. ON1R3TlL21

5000 3 30. ON1R3T1L31
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TABLE VIII.1 (Continued)

R L Header

5000 30 .3 ON1R3T2L11

5000 30 3. 0N1R3T2L21

5000 30 30. ON1R3T2L31

5000 300 .3 ONlR3T3L11

5000 300 3. ON1R3T3L21

5000 300 30. ON1R3T3L31
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LIST OF TERMS

SGEMP System Generated Electromagnetic Pulse

DSCS III Defense Satellite Communications System, Phase III

C.I.T. Current Injection Test

L/C Inductive/Capacitance

TL Transmission Line

zImpedance

zc Characteristic line impedance

zx  Load impedance at position x

io(x,+) point current source

r reflection coefficient

line propagation constant

v(x) line voltage at position x

e angle of incidence of photon to cable

Q total charge accreted on open circuited line

ID  Current Driver

s,l line length

2distance of line from its end

Il,(12) contribution to current from all source left
(right) point of z

IL  Load Current

Tp pulse width (square wave)

Voc open circuit voltage
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